SIS
JPassion.com
S(COUENWIIIRASSIONTE

X
Topics

» Brief introduction on Object-Oriented Programming (OOP)
Classes and objects

Creation of Object instances using “new” keyword
Methods: Instance methods vs. Static methods

Variables (fields, properties)

Scope of a variable

Zer

Brief Introduction on
O0P

What is Object-Oriented Programming
(OOP)?

» Revolves around the concept of objects as the basic elements
of your programs

- Object represent “things”

- Object can be tangible things such as “Car”, “Computer” or
intangible things such as “Course”, “Longevity”

» These objects are characterized by their properties (sometimes
called attributes) and behaviors

» Key aspects of OOP

- Encapsulation
- Inheritance
- Polymorphism

Example of Objects: Car and Lion

Car type of transmission turning
manufacturer braking
color accelerating

Lion Weight roaring
Color sleeping
hungry or not hungry hunting
tamed or wild

Zer

Classes and Objects

X
What is a Class and an Object?

* Class

- Represents a “type” from which an object can be created

- Can be thought of as a template, a prototype or a blueprint of an
object of same type

- |s the fundamental structure in object-oriented programming

» What makes up a class?

- Fields (they are also called properties or attributes) - specify the data
types defined by the class

- Methods - specify the behavior

I
Relationship between Class and Objects

* Object (or Object instance)

- An object is an instance of a class

- The property (field) values of an object instance is different from the
ones of other object instances of a same class

- Object instances of a same class share the same behavior
(methods), however

Example: Classes and Objects

Car Class Object Car A Object Car B
o Plate Number ABC 111 XYZ 123
E ﬁ Color Blue Red
% "E Manufacturer Mitsubishi Tovota
™ Current Speed 50 km/h 100 km/h
v 8 Accelerate Method
E % Turn Method
E S Brake Method

Example: Defining “Car” class

public class Car {

/| Fields - different values for different objects
private String plateNumber;

private String color;

private String manufacturer;

private int speed,;

I Methods - common for all objects created from this class
public void accelerate(){
/I Some code

}

public void turn(){
/I Some code

}

public void brake(){
/I Some code

}
)

10

Classes and Reusability

» Classes provide the benefit of reusability

* Programmers create many object instances from the same
class

11

I
What is Encapsulation?

* The scheme of hiding implementation details of a class

- The user of the class does not need to know the implementation
details of a class

- The user can call brake() method of the Car class without
knowing how the brake() method is actually implemented

» The implementation can change without affecting the user of
the class

12

Y

Creation of Object
Instances with “new”
keyword

How do you create Object Instance?

To create an object instance of a class, use the new keyword

For example, if you want to create an object instance of the
class String, you would write the following code,
String str2 = new String(“Hello world!”);

or
String str2 = "Hello world!";

» String class is a special (and only) class you can create an
instance without using new keyword as shown above

str? MEllD wnrldf

————————————

reterence to a String obiect
String object = :

14

=
Constructor Method of a Class

- When you create an object using newkeyword, the class'’
constructor method gets invoked automatically

- Constructor method of a class typically contains some
Initialization logic
» Syntax of constructor method
- The constructor method has the same name as the class
- The constructor method does not have a return type

- There could be multiple constructor methods (with different set
of arguments — it is called constructor overloading)

— |f there is no constructor method, a no-arg constructor
(sometimes called default constructor) gets inserted into the
class by the compiler

15

Example: Constructor Method of Car Class

public class Car {

/Il Fields - different values for different objects
private String plateNumber;

private String color;

private String manufacturer;

private int speed;

/I Constructor method
public Car() {
/I Some initialization can be done here

}

/I Methods - common for all objects created from this class
public void accelerate(){
Il Some code

}

public void turn(){
/I Some code

}

public void brake(){
/I Some code

)
1

16

Exercis

1014

nstance

ip

17

1

Methods
(Instance methods &
Static methods)

=
What is a Method?

* A method is a block of code (set of statements) that can be
called to perform some specific task

* The following are characteristics of a method

— |t can return one or no values

- |t may accept as many arguments it needs or no argument at all
(Arguments are also called parameters).

19

.
Why Use Methods?

* Methods contain behavior of a class (business logic)

- Taking a problem and breaking it into small, manageable tasks
Is critical to writing large programs.

- We can do this in Java by a creating methods to perform these
manageable tasks

20

There are Two Types of Methods

* Instance (non-static) methods

- Can be called only through an object instance - so it can be
called only after object instance is created

- Calling syntax

« [NameOfObject].[methodName]
- More common than static methods

« Static methods

- Object instance does not have to be created
- Can be called through a class

e [ClassName].[methodName]

21

.
Calling Instance (non-static) Methods

« To illustrate how to call methods, let's use the St r i ng class
as an example

* You can use the Java APl documentation to see all methods of
the String class

- http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

* A method with “static” modifier is a static method while a

method without “static” modifier is an instance (non-static)
method

22

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Calling Instance (hon-static) Methods

» To call an instance method, we write the following,
nanmef Cbj ect . naneOf Met hod(argunents);

/] Create object instance of String class
String strlinstancel = new String("!l am obj ect
| nstance of a String class");

[/ Call charAt instance nethod of String class
char x = strlnstancel. charAt(2);

23

Instance Methods

» Let's take two sample instance methods found in the String

class

Method declaration

Definition

public char charAt(int index)

Returns the character at the specified index.

An index ranges from 0 to length() - 1. The first
character of the sequence is at index 0, the
next at index 1, and so on, as for array
indexing.

public boolean edqualsIgnoreCase
(8tring anothersString)

Compares this String to another String, ignoring
case considerations. Two strings are considered
equal ignoring case if they are of the same
length, and corresponding characters in the two
strings are equal ignoring case.

24

e
Example: Calling Instance Methods

[/ Create object instance of String class
String strl = new String(“HELLO);

/1 Call i1nstance nethod charAt ().

[/ This will return the character H
// and store it to variabl e x.

char x = strl.charAt(0);

/| Create another object instance of String class
String str2 = new String(“hello”);

[l Call 1 nstance nethod equal sl gnoreCase().

[/ This wll return a bool ean val ue true.
bool ean result = strl.equal sl gnoreCase(str2);

25

=
Static Methods

- Static method definition
- Static methods are defined with the keyword static

« Static method invocation

- Static methods are invoked without creating an object instance
(means without invoking the new keyword)

- You call static method from a Class not object instance

Cl assnane. st ati cMet hodNanme(ar gunent s) ;

26

Static Method Invocation Example

// The parselInt() is a static method of the Integer class
// It converts the String 10, to an integer
int i = Integer.parseInt(%“10”);

// The toHexString() is a static method of the Integer class.

// It returns a String representation of the integer
// argument as an unsigned integer base 16
String hexEquivalent = Integer.toHexString(10);

27

Exercise 2:

1

ce Method

28

Y

Variables (Fields,
Properties,
Attributes)

.
Three Types of Variables

* There are three types of variables
- Static variable (Also called as Class variable)
- Non-static variable (Also called as Instance variable)
- Local variable (Also called as automatic variable)

* The type of variable is determined by where the variable is
declared

» The type of variable dictates where and how it can be used -
this is called the scope of variable

30

Example: Types of Variables

public class Car {

/[l Class (Static) variable
private static String manufacturer = "Ford";

/'l Instance (non-Static) variable
private String plateNunber;
private String color;

public Car() {
}

public void accel erate(){

/'l Local (automatic) vari able
Int x = 10;

31

Static Variable (Static Field)

» Declared inside a class body but outside of any method bodies
(same as Instance variable)

* Prepended with the static modifier (different from Instance
variable)

» Exists per each class
- Come to existence when the class is loaded
- Shared by all object instances of the class

32

.
Instance Variable (Instance Field)

» Declared inside a class body but outside of any method bodies
(like static variable)

* Exists per each object instance

- Different object instances typically have different values for these
Instance variables

- Come to existence when an object instance is created

33

Local Variable

» Declared within a method body

» Visible only within the method body
- Come to existence only when the method gets executed

34

Zer

Scope of Variables

=
Scope of a Variable

» The scope of a variable

- Determines where in the program the variable is accessible.

- Determines the lifetime of a variable or how long the variable
can exist in memory

* The scope is determined by where the variable declaration is
placed in the program

- Just think of the scope as anything between the curly braces
{...}, which represents a code block

- More precisely, a variable's scope is inside the code block
where it is declared, starting from the point where it is declared

36

Example 1: Scope of Variables

public class ScopeExample

1
public static wvolid main{ Stringl[] args) {
int 1 = 0;
| int 4 = 0;
|
I
i A4 e e. some code here
A—— f
B-——-——- ! |
i int kk = 0
1 U S S
i int = 0; L____ _____
E-- -t x int n = 0; _________ i
Ly ____ oI ___Z
|
N R S

I
Example 1: Explanation

 The code we have in the previous slide represents five scopes
indicated by the lines and the letters representing the scope.

» Given the variables i,j,k,m and n, and the five scopes A,B,C,D
and E, we have the following scopes for each variable:

- The scope of variable i is A.
- The scope of variable j is B.
- The scope of variable k is C.
- The scope of variable mis D.
- The scope of variable nis E.

38

Example 2: Scope of Variables

class TestPassByReference

i
public static woid main| String[] args)4
/focreate an array of integers
int [Jages = {10, 11, 12};
| //print array wvalues
! for{ int i=0; i<ages.length; i++) {
E'.-'“'i System.out.println(ages[i]);
A R
/fc2all test and pass reference to array
test(ages);
J/print array wvalues again
F 1 fer(int i=0; i<ages.length; i++) {
e System.out.println(ages[1i]);
1
CTTTTTTTh
¥
public static woid test| int[] arr){
/fchange values of array
E I==7"~""for(int 1i=0; i<arr.length; i++ | {
------ a arr[i] = i + 503
-}
¥
i

39

Example 2: Explanation

* |n the main method, the scopes of the variables are,
- ages[] - scope A
- 1in B -scope B
- i1in C —scope C

* |n the test method, the scopes of the variables are,
- arr[] - scope D
- 1in E - scope E

40

Scope of a Variable

 When declaring variables, on
identifier or name can be dec

* That means that if you have t
{

| Nt test
| Nt test

10;
20;

}

y one variable with a given
ared in a scope.

ne following declaration,

This will cause a compile error since names have to be unique

within a block

41

Scope of a Variable

* However, you can have two variables of the same name, if they
are declared in different blocks. For example,

public class Main {
t

static int test = 10;

public static void main(String[] args) {
Systemout.println(test); [l prints 10

/] test variable is defined in a new bl ock

{
Int test = 20;

Systemout.println(test);// prints 20
}

Systemout.println(test); [l prints 10

42

Scope of Variables

» Local (automatic) variable

- Only valid from the line they are declared on until the closing
curly brace of the method or code block within which they are
declared

- Most limited scope

* Instance variable
- Valid as long as the object instance is alive

» Class (static) variable

- In scope from the point the class is loaded into the JVM until the
the class is unloaded

- Class are loaded into the JVM the first time the class is
referenced

43

les

44

-1 1

SogewithnrPassion!
JEASSIonN:Com

	Slide 1
	Objectives
	Slide 3
	Start Lesson Here
	Slide 5
	Slide 6
	Classes & Objects
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	class instantiation
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	methods
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	static methods
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	variable scope
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

