
1

Java EE 6Java EE 6
Servlet 3.0 AdvancedServlet 3.0 Advanced

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics

• Servlet 3.0 Asynch. support
> Technical background
> Server side push quick tutorial
> Server side support in Servlet 3.0
> APIs

• Security enhancements

• Misc. features

3

Servlet 3.0 Asynch. Support:Servlet 3.0 Asynch. Support:
Technical BackgroundTechnical Background

4

Factors for Server side Scalability
and Performance
• Thread is an expensive resource on the server

> How efficiently thread resource on the server is being utilized
affect scalability (how many clients it can support) and
performance

> Why event-driven server side programming model is becoming
popular

• Multi-core architecture of the platform should be leveraged
> Why parallel programming is becoming popular
> Why functional programming is becoming popular

5

Web Server Scalability Evolution

1. HTTP 1.0 to HTTP 1.1

2. Thread per Connection

3. Thread per Request

4. Asynch. Servlet

6

HTTP 1.0 to HTTP 1.1

• A major improvement in the HTTP 1.1 standard (over HTTP 1.0)
is persistent connections (sometimes called “HTTP keep-alive”)
> In HTTP 1.0, a TCP connection between a Web client and server

is closed after a single request/response cycle as a default
> In HTTP 1.1, a TCP connection is kept alive and reused for

multiple HTTP requests/responses as a default – this is called
“persistent connections” (HTTP keep-alive is set through HTTP
keep-alive header)

• Persistent connections in HTTP 1.1 reduce communication lag
perceptibly, because the client doesn't need to recreate TCP
connection after each HTTP request/response cycle

7

Thread per Connection: What is it?

• Used for enhancing scalability of web servers

• Based on HTTP 1.1's persistent connections
> Each persistent HTTP connection between client and server is

associated with one thread on the server side
> Threads are allocated from a server-managed thread pool
> Once a connection is closed, the dedicated thread is recycled

back to the pool and is ready to serve other tasks

• Scalability is still constrained, however
> X number of threads can handle only X number of connections
> For many Web sites, users request pages from the server only

sporadically (meaning long idle time between requests) so the
connection threads at the server are idle most of the time -This is
a waste of thread resource

> Hence the reason for “Thread per request” is born

8

Thread per Request: What is it?

• Thanks to the non-blocking I/O capability introduced in Java 4's
New I/O APIs for the Java Platform (NIO) package, a persistent
HTTP connection doesn't require that a thread be constantly
attached to it

• Threads can be allocated to connections only when requests
are being processed
> When a connection is idle between requests, the thread can be

recycled, and the connection is placed in a centralized NIO select
set to detect new requests without consuming a separate thread

• This model, called “thread per request”, potentially allows Web
servers to handle a larger number of user connections with a
fixed number of threads
> Solves the scalability problem of the “Thread per connection”

9

Thread per Request: Who supports it?

• Popular Web servers support it by default -- Tomcat, Jetty,
GlassFish (Grizzly), WebLogic, and WebSphere -- all use
“thread per request” through Java NIO (non-blocking I/O)

• Developers do not have to do anything in order to take
advantage of “Thread per request” model since web servers
support it by default

10

Factors that further impact the scalability

• Ajax
> Ajax enabled-client sends more requests to the server (than non-

Ajax-enabled clients), increasing the traffic between client and
server – causes a new scalability problem

• Threads (as part of request handling) accessing slow-
responding resources
> Request handling might involve accessing remote resources -

such as web services or database
> Threads that handle those requests could be waiting for long time

for the responses from those remote resources

• So we need a better solution in which
> Recycle the threads that are waiting for a response from remote

resources by placing the request in a centralized queue waiting for
available resources and release the thread (This is what Servlet
3.0 Aynch. support is for.)

11

Waiting for responses from Web Services

Blocking thread (idle thread) in Servlet 2.5 Asynchronous support in Servlet 3.0

Thread
blocked

WS request
In parallel

12

Idling threads impacts scalability

● Let's say we have a Web Application accessing remote web
services with following conditions

● Handling 1000 requests / sec
● 50% requests call remote web service
● 500 threads in container thread pool

● If remote web service is slow (it takes 1000ms to respond)
● Thread starvation occurs in 1 second!
● 500 requests (50% of 1000 requests) use all 500 threads

● Asynch. Servlet support addresses this problem

13

Why Asynchronous Servlets?

● Async Servlets reuse threads that handle requests that are
● Waiting for responses (eg web services)
● Waiting for resources (eg JDBC connection)
● Waiting for events (eg Chat message)

14

Example Code: Asynch. Servlet
• This is the part of queuing AsyncContext object, which captures pending

request/response pair

// When the asyncSupported attribute is set to true, the response object is not
// committed on method exit. It will be held in the AsyncContext object.
@WebServlet(name="myServlet", urlPatterns={"/slowprocess"}, asyncSupported=true)
public class MyServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) {
 // Calling startAsync() returns an AsyncContext object that holds the
 // request/response object pair. The AsyncContext object is then stored in an
 // application-scoped queue. The AsyncContext object is then retrieved
 // later on by a different thread for sending back response.
 AsyncContext aCtx = request.startAsync(request, response);
 ServletContext appScope = request.getServletContext();
 ((Queue<AsyncContext>)appScope.getAttribute("slowWebServiceJobQueue")).add(aCtx);

 // Without any delay, the doGet() method returns to the runtime, and the original request
 // thread is recycled
 }
}

15

Servlet 3.0 Asynch. Support:Servlet 3.0 Asynch. Support:
Quick tutorial on Server-side Quick tutorial on Server-side
PushPush

16

What is Server-side Push?

• The first-generation Ajax is not “asynchronous” enough
> It handles a single user client-to-server asynchronicity only but not

server-to-client asynchronocity – in other words, the server cannot
send data to the client whenever it wants to

• Full asynchronicity includes “updates pushed from server to the
clients”(server-to-client) at any time
> Server-driven page update at the client

• Allow multiple users to communicate and collaborate within the
web application
> Chat, auction, online gaming

• Sometimes called as “Comet”, “Server-side Push”, “Ajax Push”,
or “Reverse Ajax”

17

Applications with Server-side Push

• Chat
• Auctions
• Distance learning
• Games
• Collaborative authoring
• Shared WebDAV filesystem
• Blogging and reader comments
• SIP-coordinated mobile applications
• Hybrid chat/email/discussion forums
• Customer assistance on sales/support pages
• Multi-step business process made collaborative
• Shared trip planner or restaurant selector with maps
• Shared calendar, “to do” list, project plan

18

What is Comet (Ajax Push)?
Responsive, low-latency interaction for the web

• A programming technique that enables web servers to send
data to the client without having any need for the client to
request for it

• Allows creation of highly responsive, event-driven web
applications
> Keep clients up-to-date with data arriving or changing on the

server, without frequent polling

• Advantages
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling

requests to check for updates

• In HTML5, this is supported natively through WebSockets

19

Ajax Poll vs Ajax Push
Bending the rules of HTTP.

> Comet (or Server side push) refers to both the Long Polling and
Streaming methods of web programming

20

Ajax Poll vs Ajax Push
Bending the rules of HTTP.

• Poll:
> Send a request to the server every X seconds
> The response is “empty” if there is no update

• Long Poll: (most popular)
> Client sends a request to the server, server waits for an event to happen,

then send the response
> The response is never empty
> No client side hack needed – the server functions like a slow server

• Http Streaming:
> Client sends a request, server waits for events, stream multi-part/chunked

responses, and then wait for the events
> The response is continually appended to

21

Servlet 3.0 Asynch. Support:Servlet 3.0 Asynch. Support:
Server-side Push support in Server-side Push support in
Servlet 3.0Servlet 3.0

22

Proprietary Solutions before Servlet 3.0

• Lack of asynchronous support in the Servlet 2.5 has caused
server vendors to devise workarounds by weaving proprietary
classes and interfaces that promote scalable Comet
programming into the Servlet 2.5 API
> Tomcat has a CometProcessor class
> Jetty 6 has Continuations class
> GlassFish Grizzly has a CometEngine class

• These applications using proprietary classes and interfaces
were not portable
> Hence the reason of “Asynch. support in Servlet 3.0” is born

23

Standard & Portable Solution in Servlet 3.0

• Asynch. Servlet API (in Servlet 3.0) now provides standard and
portable way of supporting server-side push

24

Servlet 3.0 Asynch. Servlet 3.0 Asynch.
Support: APIsSupport: APIs

25

Asynch. Support Configuration

• Asynch. support can be configured in several ways

• Option #1: With annotation (most common)
> @WebServlet(asyncSupported=true)

• Option #2: through “web.xml”
> <async-supported>true</async-supported>

• Option #3: Programmatic
> registration.setAsyncSupported(boolean)

26

Asynch. Servlet APIs

• ServletRequest#startAsync()
> Returns AsyncContext object, which contains HTTP request and

response objects
> The AsyncContext object can be saved somewhere for later

processing by another thread

• ServletRequest#isAsyncSupported()
> Checks if this request supports asynchronous operation

27

Asynch. Servlet APIs

• AsyncContext#dispatch(String path)
> Dispatches the request and response objects of this AsyncContext

to the given path scoped to the given context
> The path parameter is interpreted in the same way as in

ServletRequest#getRequestDispatcher(String path)

• AsyncContext#complete()
> Completes the asynchronous operation that was started on the

request that was used to initialize this AsyncContext, closing the
response that was used to initialize this AsyncContext

28

Asynch. Servlet APIs: Event Handling

• AsyncContext#addListener(AsyncListener listener)
> Registers the given AsyncListener

• AsyncListener#OnTimeout(AsyncEvent event)
> Notifies this AsyncListener that an asynchronous operation has

timed out

• AsyncListener#OnComplete(AsyncEvent event)
> Notifies this AsyncListener that an asynchronous operation has

been completed

• AsyncListener#OnError(AsyncEvent event)
> Notifies this AsyncListener that an asynchronous operation has

failed to complete

29

Asynchronous Web Service

Webapp

doGet()

doGet()

startAsync() WS call

dispatch()

Server

30

Lab:Lab:

Exercise 1: Asynch. ServletExercise 1: Asynch. Servlet
Exercise 2: Chat applicationExercise 2: Chat application

4547_javaee6_servlet3.0_advanced.zip4547_javaee6_servlet3.0_advanced.zip

31

Security EnhancementsSecurity Enhancements

32

New Security Annotations

• In Servlet 2.5
> Only @DeclareRoles and @RunAs are supported in servlets
> @DenyAll, @PermitAll, @RolesAllowed are only supported for

EJBs

• In Servlet 3.0
> @RolesAllowed -> auth-constraint with roles
> @DenyAll -> Empty auth-constraint
> @PermitAll -> No auth-constraint
> @TransportProtected -> user-data-constraint

• Annotations enforced on javax.http.Servlet class and doXXX
methods of HttpServlet
> Method-targeted annotations take precedence over class-targeted

annotations

33

Programmatic Login/Authentication/Logout

• HttpServletRequest#login(String username, String password)
> Replacement for “Form Based Login” – removes the need of JSP-

based login forms
> Allows an application to collect user name and password

information in any way it wants

• HttpServletRequest#logout
> Allow an application to reset the caller identity of a request.

• HttpServletRequest#authenticate(HttpServletResponse)
> Application initiates container mediated authentication from a

resource that is not covered by any authentication constraints in
web.xml

> Application decides when authentication must occur
> A login dialog box displays and collects the user name and

password for authentication purposes.

34

Security Enhancements

• Security constraints in web.xml override security annotations

• <web-resource-collection> enhanced with <http-method-
omission> to
> Allow constraints to be specified on non-enumerable HTTP

method subsets (i.e., all other methods)

35

Servlet 2.5 vs Servlet 3.0
<security-constraint>
 <display-name>WebConstraint</display-name>
 <web-resource-collection>
 <web-resource-name>test</web-resource-name>
 <description/>
 <url-pattern>/test.jsp</url-pattern>
 <http-method>POST</http-method>
 <http-method>HEAD</http-method>
 <http-method>PUT</http-method>
 <http-method>OPTIONS</http-method>
 <http-method>TRACE</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>niceguys</role-name>
 </auth-constraint>
 </security-constraint>

<security-constraint>
 <display-name>WebConstraint</display-name>
 <web-resource-collection>
 <web-resource-name>test</web-resource-name>
 <description/>
 <url-pattern>/test.jsp</url-pattern>
 <http-method-omission>GET
 </http-method-omission>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>niceguys</role-name>
 </auth-constraint>
 </security-constraint>

The above two are equivalent: Both indicate that the
resource referenced by the url pattern /test.jsp, when
accessed by all the http-methods except GET, should be
constrained to be viewed only by authenticated users
belonging to the role niceguys

36

Lab:Lab:

Exercise 4: SecurityExercise 4: Security
4547_javaee6_servlet3.0_advanced.zip4547_javaee6_servlet3.0_advanced.zip

37

Misc. FeaturesMisc. Features

38

Session Tracking Cookie

• Session Tracking Cookie configuration
> Via web.xml
> Programmatic via javax.servlet.SessionCookieConfig

• Support for HttpOnly cookie attribute
> servletContext.getSessionCookieConfig().setHttpOnly(true)

39

Servlet 3.0 File Upload

• Servlet 2.5
> Servlet API does not have built-in support for file upload
> Open source libraries such as Commons file upload and COS

multipart parser were used

• Servlet 3.0
> Out of the box support of file upload
> @MultipartConfig annotation - when present on any servlet, it

indicates that the servlet expects request of type multipart
> Two new methods have been introduced to HttpServletRequest

interface
> public Collection<Part> getParts()
> public Part getPart(String name)

40

Servlet 3.0 File Upload
@WebServlet("/upload.html")
@MultipartConfig(location="c:\\tmp", fileSizeThreshold=1024*1024,
 maxFileSize=1024*1024*5, maxRequestSize=1024*1024*5*5)
public class FileUploadServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 Collection<Part> parts = req.getParts();

 out.write("<h2> Total parts : "+parts.size()+"</h2>");

}

41

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	The Asynchronous Web Revolution The Web enters the Participation Age.
	Applications in the Participation Age Application-mediated communication.
	Slide 18
	Ajax Poll vs Ajax Push Bending the rules of HTTP.
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

