
1

Sonar: Manage Sonar: Manage
Source Code QualitySource Code Quality

Sang ShinSang Shin
www.jPassion.comwww.jPassion.com

““Learn with jPassion!”Learn with jPassion!”

2

Topics
• Why manage source code quality?
• What is and why Sonar?
• Sonar architecture
• How to get started
• Integration with other tools

3

Why ManageWhy Manage
Source Code Quality?Source Code Quality?

4

7 Deadly Sins of a Developer
• Not following coding standards and best practices
• Lacking comments in the source code, especially in public

APIs
• Having duplicated lines of code
• Having complex component or/and a bad distribution of

complexity amongst components
• Having no or low code coverage by unit tests, especially in

complex part of the program
• Leaving potential bugs
• Having a spaghetti design

5

7 Axes of Software Quality

6

What is & Why What is & Why
Sonar?Sonar?

7

What is Sonar?
• Sonar is an open source Platform used by development

teams to manage source code quality
• Sonar has been developed with a main objective in mind:

make code quality management accessible to everyone
with minimal effort

8

How to Proceed on Source Code
Quality Management?
• Define which of those axes are important to you and to what

extend
• Come up with a plan for reaching the target level (that might

be simply to keep a high level of quality)
• Start small and go bigger when it gets fully adopted by the

whole development team.

9

Managing Quality Profile
• Sonar enables to manage multiple quality profiles in order to

adapt the required level to the type of project (only support,
new project, critical application, etc).

• Managing a profile consists of:
> activate / deactivate / weight coding rules
> define thresholds on metrics for automatic alerting
> define project / profile association

10

Sonar ArchitectureSonar Architecture

11

Sonar Technical Architecture

12

Sonar Architectural components
• A set of source code analyzers
> Grouped in a Maven plugin – Sonar can be launched through CI
> Triggered on demand
> Although Sonar relies on Maven to run analysis, it is capable to

analyze Maven and non-Maven projects.
• A database
> Maintains the results of the analysis, the projects and global

configuration, historical analysis for TimeMachine
> 5 database engines are currently supported : Oracle, MySQL,

Derby (demo only), PostgreSQL and MS SQLServer
• A web reporting tool
> Used to display code quality dashboards on projects, hunt for

defects, check TimeMachine and to configure analysis.

13

Tools used by Sonar
• For finding coding rules & style violations
> PMD
> Checkstyle

• For finding potential bugs
> Findbugs

• For measuring coverage by unit tests
> Jacoco
> Cobertura
> Clover

• For code analyzing through source code & bytecode
parsing
> Squid

14

How to Get StartedHow to Get Started

15

Step for Getting Started
• Download the distribution from

http://sonar.codehaus.org/downloads/ and unzip it
• Open a console and start the server:
> $SONAR_HOME\bin\windows-x86-32\StartSonar.bat on windows
> $SONAR_HOME/bin/[OS]/sonar.sh on other platforms

• Open a console where you want to checkout the source and
run
> svn co

http://svn.apache.org/viewvc/commons/proper/collections/trunk/.
• Run mvn install sonar:sonar in the same directory
• Browse http://localhost:9000

16

Plugin'sPlugin's

17

Plugin categories
• Additional languages
> Flex plugin, Groovy plugin, Web plugin, XML, JavaScript plugin

• Governance
> Technical debt plugin, Total quality plugin, etc

• Visualization & reporting
> Radiator plugin, Motion chart plugin, Timeline plugin, Sonar PDF

plugin, CSV export plugin
• Integration
> Hudson/Jenkins plugin, Bamboo plugin
> SCM Activity plugin, Sonar Maven report plugin, Google Analytics

plugin
• Additional metrics
• Localization

18

Technical Debt Plugin (Page 1)
• Evaluates how much technical debt a project is in. It

consists of 4 advanced measures

19

Technical Debt Plugin (Page 2)
• How it gets calculated
> The debt is first calculated on the basic axis : Duplication,

Violations, Complexity, Coverage, Documentation and Design. It is
then summed up to provide a global measure

• Explanation on measurements
> “debt ratio” - percentage of the current technical debt of the project

versus the total possible debt for the project
> “cost to reimburse” - $$ what it would cost to clean all defects on

every axis (no more violations, no more duplications...)
> “work to reimburse” - cost to reimburse expressed in man days
> “breakdown” - gives through a pie chart a view of the debt

distribution across the 6 quality axis

20

Total Quality Plugin
• Combines four domains measures (architecture, design,

code, and tests) in order to calculate a global and unified
project quality health
> TQ= 0.25*ARCH + 0.25*DES + 0.25*CODE + 0.25*TS

• Explanation on measurements
> ARCH (Architecture) = 100 – TI (TI means Tangle Index)
> DES (Design) = 0.15*NOM (Class complexity) + 0.15*LCOM (Lack

of cohesion of method) + 0.25*RFC (Response for method) +
0.25*CBO (Efficient coupling) + 0.20*DIT (Depth of inheritance)

> CODE (Code) = 0.15*DOC (Documented API density) +
0.45*RULES (Rules compliance index) + 0.40*DRYNESS
(Duplicated lines density)

> TS (Test) = Test = 0.80*COV (Code coverage) + 0.20*SUC (Unit
tests success density)

21

Installation of Plugin's

22

 Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

““Learn with Passion!”Learn with Passion!”

22

http://www.javapassion.com/codecamps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

