
1

Groovy ClosureGroovy Closure

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics

• What is and why closure?

• Method vs. Closure

• Closure as first-class objects

• Closure parameters & usage of parentheses

• Closure scope

• Method closure operator

• Closure usage areas

What is and What is and
Why Closure?Why Closure?

4

What is a Closure?

• A closure is a chunk of code within {...}

• A closure behaves like a first-class object (just like String or
Integer object)
> It can be assigned to a variable (in the same way a String object

can be assigned to a variable)
> It can be passed around as a parameter of a method (in the same

way a String object can be passed around as a parameter)
> It can be a return value (in the same way a String object can be a

return value)

5

Why Closure?

• Enables simpler programming
> 5.times {println "Hello world"}
> [“Apple”, “Orange”, “Banana”].each {print it}
> names.findAll { it.size() <= 3 } // names is an array of names

• There are certain things only closure can do
> Higher order function (function that takes a function as an

argument or returns a function)

• Until Java 7, you could simulate Closure behavior with
anonymous inner class
> “anonymous inner class” syntax is verbose and non-intuitive
> Java 8 now supports closure through Lambda

Method vs. ClosureMethod vs. Closure

7

Method vs. Closure in Groovy

• Groovy supports both method and closure syntax

• Similarities
> Both contain chunk of code (i.e. one or more statements)
> Both are invoked in the same way
>my_method(..)
>my_closure(..) // my_closure.call() is also allowed

> Both can receive parameters
> In both, the last expression is the return value

• Differences
> A closure is an object while a method is not - Closure is defined

(becomes a closure object) only when you "bind" (assign) the block of
code of {..} to a variable or pass it as a parameter

> The syntax through which they receive parameters are different
> A closure takes a single parameter as “it”

8

LabLab

Exercise 1: Method vs. ClosureExercise 1: Method vs. Closure
5612_groovy_closure.zip5612_groovy_closure.zip

Closure as Closure as
First-class ObjectsFirst-class Objects

10

Closure as a First-class object #1
• Closure object can be assigned to a variable (just like String object can

be assigned to a variable)
// A closure is defined and then assigned to a variable
def my_variable = { println "hello!" }
// Call closure
my_variable.call() // => "hello!"
my_variable() // => "hello!"

// By default, closures take single parameter called "it"
def my_variable2 = { println it }
// Call closure
my_variable2.call("hello!") // => "hello!"
my_variable2("hello!") // => "hello!"

11

Closure as a First-class Object #2
• Closure object can be passed as a parameter (just like String

object can be passed as a parameter)

// Define a target method that receives a parameter
def greetWithClosure1(closureAsParamater){
 closureAsParamater("Hello")
}

// Pass a closure as a parameter - the following two work the same.
// If the closure is the last parameter, parentheses can be omitted
greetWithClosure1({println it}) // => Hello
greetWithClosure1 {println it} // => Hello

def myClosure = {println it}
greetWithClosure1(myClosure) // => Hello
greetWithClosure1 myClosure // => Hello

12

Closure as a First-class Object #3
• Closure object can be returned as a return value (just like String

object can be returned as a return value)

// Define a method which returns a closure
def aMethod(String name){
 return {println "My name is ${name}!"}
}

// A closure is returned and then is assigned to a variable
def aClosure = aMethod("Sang Shin")

// Call the closure
aClosure() // => My name is Sang Shin!

13

LabLab

Exercise 2: Closure as First-classExercise 2: Closure as First-class
ObjectsObjects

5612_groovy_closure.zip5612_groovy_closure.zip

Closure Parameters &Closure Parameters &
Usage of Parentheses Usage of Parentheses

15

Closure Parameters
• By default closures take 1 default parameter called "it"

def square = { it * it }
println square(5) // => 25

• You can also create closures with named parameters with ->
def square = { num -> num * num }
println square(5) // => 25

def add = { a, b -> a+b }
println add(5, 7) // => 12

printMapClosure = { key, value -> println key + "=" + value }
["Yue" : "Wu", "Mark" : "Williams"].each(printMapClosure) // [Yue:Wu, Mark:Williams]

16

No Parentheses needed when calling a closure or a method

• When calling a closure or a method with parameters, the
parameters do not need to be enclosed with parentheses ()
// Define a method
def index(parameter1, parameter2) {
 println "I am a method receiving ${parameter1} and ${parameter2}"
}
// Call the method
index "Sang Shin", 11

// Define a closure and assign it to a variable
def index = {
 parameter1, parameter2 -> println "I am a closure receiving ${parameter1} and $
{parameter2}"
}
// Call the closure
index "Yo man", 22
index.call "Yo man", 22

17

Parentheses when closure is passed as a parameter

• If a closure is the last parameter or only parameter, there is no
need to enclose the parameters with ()

• If a closure is not the last parameter, the parameters need to be
enclosed with ()
// Define a method that takes a closure as a paramater
def greetWithClosure(greeting, name, myClosure){
 println "${greeting}, ${name}"
 myClosure(new Date())
}

// The following three work the same. If the closure is
// the last parameter, there is not need to enclose the parameters with ()
greetWithClosure("Goodbye", "Shelley", {println it})
greetWithClosure "Goodbye", "Shelley", {println it}
greetWithClosure("Goodbye", "Shelley") {println it}

18

LabLab

Exercise 3: Passing ParametersExercise 3: Passing Parameters
to Closure & Usage of Parenthesesto Closure & Usage of Parentheses

5612_groovy_closure.zip5612_groovy_closure.zip

Closure Scope Closure Scope

20

Closure Scope
• Closures can access variables defined in the same scope as the

closure itself
// A closure object can access variables (bound to those variables)
// in the same scope when it gets created, so it can access
// “name” variable because it is defined in the same scope
def name = 'Sang Shin'
def my_closure_variable = { println "hello, ${name}!" }

// Call closure and note that it can access name variable
my_closure_variable() // => hello, Sang Shin!

// Change the value of name variable
name = 'Bill'
my_closure_variable() // => hello, Bill!

21

LabLab

Exercise 4: Closure ScopeExercise 4: Closure Scope
5612_groovy_closure.zip5612_groovy_closure.zip

Method Closure Operator Method Closure Operator

23

Method Closure Operator

• A method can be converted to a closure using &. It is called
method closure operator – useful when business logic is already
present as a method but needs to make it a closure
def list = ["apple", "orange", "banana"]

println "----- \"each\" takes a closure as an argument"
list.each {println it}

println "----- Define \"printSomething\" method"
String printSomething (String something){
 println something
}

println "----- Convert \"printSomething\" method into a closure using Method Closure Operator"
//list.each(printSomething) // Exception
list.each(this.&printSomething)
list.each this.&printSomething //Without parentheses

24

LabLab

Exercise 5: Method Closure OperatorExercise 5: Method Closure Operator
5612_groovy_closure.zip5612_groovy_closure.zip

Closure usage areasClosure usage areas

26

Closure is used everywhere..

• Iterators

• Callbacks

• Specialized control structures

• Higher order functions (Functions that take/return functions)

• Dynamic method definition

• Resource allocation

• Threads

• Continuations

27

Closure Simplifies Coding

• Number class has times method which takes a closure as a
parameter
> 5.times {println "Hello world"}

28

LabLab

Exercise 6: Usage of ClosuresExercise 6: Usage of Closures
5612_groovy_closure.zip5612_groovy_closure.zip

29

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

