
1

SerializationSerialization

Sang ShinSang Shin
Michèle GarocheMichèle Garoche

www.javapassion.comwww.javapassion.com
““Learn with Passion!”Learn with Passion!”

1

2

Topics
● What is Serialization?
● What is preserved when an object is serialized?
● Transient keyword
● Process of serialization
● Process of deserialization
● Version control
● Changing the default protocol
● Creating your own protocol via Externalizable

3

 What is What is
Serialization?Serialization?

4

What is Serialization?
● Ability to read or write an object to a stream

– Process of "saving" an object
● Used to save object to some permanent storage

– Its state should be written in a serialized form to a
file such that the object can be reconstructed at a
later time from that file

5

Streams Used for Serialization
● ObjectOutputStream

– For serializing (saving an object)
● ObjectInputStream

– For deserializing (reconstructing an object)

6

Requirement for Serialization
● To allow an object to be serializable:

– Its class should implement the Serializable interface
or inherit class that implements the Serializable
interface

● Serializable interface is marker interface (meaning it
does not have any methods)

– Its class should also provide a default constructor (a
constructor with no arguments)

7

Non-Serializable Objects
● Most Java classes are serializable
● Objects of some system-level classes are not

serializable
– Because the data they represent constantly changes

● Reconstructed object will contain different value
anyway

● For example, thread running in my JVM would be
using my system's memory. Persisting it and trying to
run it in your JVM would make no sense at all.

● A NotSerializableException is thrown if you try to
serialize non-serializable objects

8

 What is preserved What is preserved
when an Object is when an Object is

serialized?serialized?

9

What is preserved when an object
is serialized?

● Enough information that is needed to reconstruct
the object instance at a later time
– Property values of the object are preserved
– Methods and constructors are not part of the

serialized stream
– Class information is included, however

10

 Process of Process of
SerializationSerialization

11

Serialization: Writing an Object
Stream

● Use its writeObject method of the
ObjectOutputStream class
public final void writeObject(Object obj)
 throws IOException
where,
– obj is the object to be written to the stream

(meaning it is the object to be serialized)

12

Serialization: Writing an Object
Stream

1 import java.io.*;
2 public class SerializeBoolean {
3 SerializeBoolean() {
4 Boolean booleanData = new Boolean("true");
5 try {
6 FileOutputStream fos = new
7 FileOutputStream("boolean.ser");
8 ObjectOutputStream oos = new
9 ObjectOutputStream(fos);
10 oos.writeObject(booleanData);
11 oos.close();
12 //continued...

13

Serialization: Writing an Object
Stream

13 } catch (IOException ie) {
14 ie.printStackTrace();
15 }
16 }
17
18 public static void main(String args[]) {
19 SerializeBoolean sb = new SerializeBoolean();
20 }
21 }

14

 Process of Process of
DeserializationDeserialization

15

Deserialization: Reading an Object
Stream

● Use its readObject method of the
ObjectInputStream class
public final Object readObject()

 throws IOException, ClassNotFoundException

● The Object type returned should be typecasted to
the appropriate class before methods on that class
can be executed

16

Deserialization: Reading an Object
Stream

1 import java.io.*;
2 public class UnserializeBoolean {
3 UnserializeBoolean() {
4 Boolean booleanData = null;
5 try {
6 FileInputStream fis = new
7 FileInputStream("boolean.ser");
8 ObjectInputStream ois = new
9 ObjectInputStream(fis);
10 booleanData = (Boolean) ois.readObject();
11 ois.close();
12 //continued...

17

Deserialization: Reading an Object
Stream

13 } catch (Exception e) {
14 e.printStackTrace();
15 }
16 System.out.println("Unserialized Boolean from "
17 + "boolean.ser");
18 System.out.println("Boolean data: " +
19 booleanData);
20 System.out.println("Compare data with true: " +
21 booleanData.equals(new Boolean("true")));
22 }
23 //continued...

18

Deserialization: Reading an Object
Stream

13 public static void main(String args[]) {
14 UnserializeBoolean usb =
15 new UnserializeBoolean();
16 }
17 }

19

Demo:Demo:
SerializeAndDeserializeCurrrentTimeSerializeAndDeserializeCurrrentTime

1043_javase_serialization.zip1043_javase_serialization.zip

20

 Transient keywordTransient keyword

21

When to use transient keyword?
● How do you serialize an object of a class that

contains a non-serializable class as a field?
– Like a Thread object

● What about a field that you don't want to to
serialize?
– Some fields that you want to recreate anyway
– Performance reason

● Mark them with the transient keyword
– The transient keyword prevents the field from being

serialized
– Serialization does not care about access modifiers

such as private

22

Example: transient keyword

1 class MyClass implements Serializable {
2

3 // Skip serialization of the transient field
4 transient Thread thread;
5 transient String fieldIdontwantSerialize;
6
7 // Serialize the rest of the fields
8 int data;
9 String x;
10
11 // More code
12 }

23

Demo:Demo:
SerializeAndDeserializeCurrrentTimeTransientSerializeAndDeserializeCurrrentTimeTransient

1043_javase_serialization.zip1043_javase_serialization.zip

24

 Version ControlVersion Control

25

Version Control: Problem Scenario
● Imagine you create a class, instantiate it, and write

it out to an object stream
● That saved object sits in the file system for some

time
● Meanwhile, you update the class file, perhaps

adding a new field
● What happens when you try to read in the flattened

object?
– An exception will be thrown -- specifically, the

java.io.InvalidClassException
– Why? (See next slide)

26

Unique Identifier
● Why exception is thrown?

– Because all persistent-capable classes (*.class
files) are automatically given a unique identifier

– If the identifier of the class does not equal the
identifier of the saved object, the exception will
be thrown

27

Version Control: Problem Scenario
Again

● However, if you really think about it, why
should it be thrown just because I added a
field? Couldn't the field just be set to its
default value and then written out next time?

● Yes, but it takes a little code manipulation.
The identifier that is part of all classes is
maintained in a field called serialVersionUID.

● If you wish to control versioning, you simply
have to provide the serialVersionUID field
manually and ensure it is always the same,
no matter what changes you make to the
class file.

28

How Do I generate a Unique ID?
Use serialver utility

● serialver utility is used to generate a unique ID
● Example

serialver MyClass
MyClass static final long serialVersionUID =

10275539472837495L;

29

Demo:Demo:
SerializeAndDeserializeCurrrentTimeVersionControlSerializeAndDeserializeCurrrentTimeVersionControl

1043_javase_serialization.zip1043_javase_serialization.zip

30

 Customizing Customizing
the Default Protocolthe Default Protocol

31

Provide your own readObject() and
writeObject() methods

● Used when the default behavior of readObject()
and writeObject() are not sufficient

● You provide your own readObject() and
writeObject() in order to add custom behavior

● Example
 // My own readObject method
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {

 // our "pseudo-constructor"
 in.defaultReadObject();
 // now we are a "live" object again, so let's run rebuild and start
 startAnimation();

 }

32

Demo:Demo:
SerializeAnimationThreadNotStarted,SerializeAnimationThreadNotStarted,

SerializeAnimationThreadStartedSerializeAnimationThreadStarted
1043_javase_serialization.zip1043_javase_serialization.zip

33

 Creating Your own Creating Your own
Protocol via ExternalizableProtocol via Externalizable

interfaceinterface

34

Externalizable Interface
● The writeExternal and readExternal methods of the

Externalizable interface can be implemented by a
class to give the class complete control over the
format and contents of the stream for an object and
its supertypes

● These methods must explicitly coordinate with the
supertype to save its state

● These methods supersede customized
implementations of writeObject and readObject
methods

35

How does Object Serialization
Scheme works with Externalizable
● Object Serialization uses the Serializable and

Externalizable interfaces
● Each object to be stored is tested for the

Externalizable interface
– If the object supports Externalizable, the

writeExternal method is called
– If the object does not support Externalizable and

does implement Serializable, the object is saved
using ObjectOutputStream.

36

Demo:Demo:
SerializeObjectReaderWriterSerializeObjectReaderWriter
1043_javase_serialization.zip1043_javase_serialization.zip

32

 Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

““Learn with Passion!”Learn with Passion!”

32

http://www.javapassion.com/codecamps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

