
1

RMI (RemoteRMI (Remote
Method Invocation)Method Invocation)

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1



2

Topics

 What is RMI? Why RMI?
 Architectural components
 Serialization 
 Writing RMI Server and Client
 Dynamic class loading
 Code movement
 Codebase
 ClassLoader delegation
 Activation
 RMI Security
 HTTP Tunneling



What is RMI?What is RMI?



4

What is RMI?

 RPC (Remote Procedure Call) between 
Java Objects

 General RPC behavior
 Invoke remote methods 
 Pass arguments into methods 
 Receive results from methods 

 RPC Evolution
 Non-object-oriented RPC
 CORBA (Object-oriented)
 RMI (Object-based – Java only)



5

What is RMI?

 Differences from other RPC’s
 RMI is Java-based
 RMI supports code movement  
 RMI has built-in security mechanism
 RMI exposure of network failures to 

application programmers through 
RemoteException



6

Why RMI?

 Capitalizes on the Java object model
 Minimizes complexity of distributed 

programming
 Uses pure Java interfaces 

 no new interface definition language (IDL)
 Preserves safety of Java runtime
 Recognizes differences of remote call from 

local call
 partial failure
 latency
 no global knowledge on system state



RMI Architectural RMI Architectural 
ComponentsComponents



8

RMI Architectural Components

 Remote interface
 Stub and Skeleton (generated through 

“rmic”
 Remote object



9

Remote Interface

 Java interface
 Specify remotely accessible methods  

 Implemented by a class, an instance of 
which becomes a remote object

 Contract between caller of the remote 
method (RMI client) and remote object 
(RMI server)

 Extends java.rmi.Remote interface
 Markup interface



Stub & SkeletonStub & Skeleton



11

Stub and Skeleton

 A tool (rmic) creates 
 RMI stub 
 (Optionally) RMI skeleton 

 Gets created from RMI server 
implementation (not from RMI 
interface)



12

Stub and Skeleton

 RMI Stub
 Resides in client’s local address space
 Represents remote object to client

 Plays the role of proxy of remote object
 Implementation of Remote interface
 Caller invokes methods of RMI Stub locally

 Connects to the remote object
 Sends arguments to and receive results 

from remote object
 Performs marshaling and unmarshaling



13

Stub and Skeleton

 RMI Skeleton
Resides in server’s address space
 Receives arguments from caller (RMI 

Client's Stub) and send results back to 
caller
Performs marshaling and unmarshaling

 Figures out which method of remote 
object to be called

 From JDK 1.3, RMI Skeleton gets created 
automatically via reflection



14

Remote Object

 Implementation of remote interface
 Needs to be exported

 In order to be ready to receive calls from 
caller

 Can be exported in two types
 Non-activatable (extends 

java.rmi.server.UnicastRemoteObject)
 Activatable (extends 

java.rmi.server.Activatable)



RMI Communication ModelRMI Communication Model



16

RMI Communication Model

Caller

Remote Interface

Stub

Remote 
Object

Skeleton



17

RMI Control Flow



18

RMI Control Flow

 Caller (Client)
1. invokes a method of a remote object

 Stub of the remote object 
1. intercepts the method call
2. marshals the arguments
3. makes calls to remote object



19

RMI Control Flow

 Remote object
1. Receives the calls via Skeleton
2. Unmarshals the arguments
3. Performs the call locally
4. Marshals the result
5. Send the result to client

 Stub
1. Receives result
2. Unmarshal result
3. Return result to client



Serialization in RMISerialization in RMI



21

Marshaling and Unmarshaling

 Marshaling is a process of encoding 
objects to put them on the wire

 Unmarshaling is the process of decoding 
from the wire and placing object in the 
address space 

 RMI uses Java programming lanaguage's 
serialization and deserialization to 
perform marshaling and unmarshaling
 These terms are used interchangeably



22

Serialization in RMI 

 Arguments/Results get serialized before 
being transported by sender

 Arguments/Results get deserialized after 
being transported by receiver

 Arguments/Results in RMI can be one of 
the following two 
 Remote object
 Non-remote object



23

Serialization in RMI

 For remote object
 Object which is Remote interface type
 Stub gets serialized (instead of remote object 

itself)
 “Pass by reference” semantics

 Stub is kind of a reference to remote object
 For non-remote object

 Object which is not Remote interface type 
 Normal serialized copy of the object
 Should be type of java.io.Serializable
 “Pass by Value” semantics



24

Example

// Arguments and Returns are non-remote objects
public interface SayHelloStringRemote extends Remote {
     public String SayHelloString (String message) 
                                                  throws  RemoteException;
}

// Arguments has both non-remote and remote objects
public interface SayHelloObjectRemote extends Remote {
     public String SayHelloObject (String messsage,
                                        SayHelloStringRemote  someName)
                                                  throws  RemoteException;
}



25

Serialization

 Serialized copy of an object 
 Stream of bytes
 Persistently maintains state of an object

 State of non-static and non-transient variables 
of the object

 Does NOT contain class bytecodes (*.class 
files)
 Instead maintains information on “where to get 

the class bytecodes”
– codebase annotation 
– Who performs the codebase annotation?

 If the class is unknown to the recipient, it will 
be downloaded automatically



26

Serialization

 Serialized copy defines state
 Class files define behavior
 Both can be moved around over the 

network
 Collectively this is called "Code movement"



Writing RMI ServerWriting RMI Server



28

Steps of Writing RMI Server

 #1: Define remote interface
 #2: Write and compile server 

implementation 
 #3: Generate stub class from server 

implementation class
 #4: Write startup class



29

#1: Define Remote Interface

 Defines methods that are called remotely
 Must be declared as public
 Extends the java.rmi.Remote interface 
 Each method must declare 

java.rmi.RemoteException 
 The data type of any remote object that is 

passed as an argument or return value 
(either directly or embedded within a local 
object) must be declared as the Remote 
interface type (for example, Hello) not the 
implementation class (HelloImpl). 



30

#1: Remote Interface Example

import java.rmi.*;

/**
 * Remote Interface
 */
public interface HelloInterface extends Remote {

    public String sayHello(String name) 
                      throws RemoteException;
}



31

#2: Write Server implementation

 Implement the remote interface 
 Extend one of the two remote classes

 java.rmi.server.UnicastRemoteObject
 java.rmi.activation.Activatable

 Write constructor for the remote object 
 By extending one of the two remote classes 

above, they are automatically exported
 You can manually export it as well

 Throw RemoteException
 Register remote objects with RMI registry



32

#2: Server Implementation Example

import java.rmi.*;
import java.rmi.server.*;

/**
 * Remote implementation class.  Because it extends the
 * UnicastRemoteObject, it is automatically exported.
 */
public class HelloImpl extends UnicastRemoteObject
        implements HelloInterface {

    public HelloImpl() throws RemoteException {
    }

    public String sayHello(String name) throws RemoteException {
        return "Hello " + name + "!";
    }
}



33

#3: Generate Stub class

C:\myprojects\RMI_app>rmic HelloImpl
C:\myprojects\RMI_app>dir
 Volume in drive C has no label.
 Volume Serial Number is F090-5679

 Directory of C:\myprojects\RMI_app

10/16/2010  07:39 AM    <DIR>          .
10/16/2010  07:39 AM    <DIR>          ..
10/16/2010  07:37 AM               454 HelloImpl.class
10/16/2010  07:37 AM               757 HelloImpl.java
10/16/2010  07:39 AM             1,639 HelloImpl_Stub.class
10/16/2010  07:37 AM               222 HelloInterface.class
10/16/2010  07:35 AM               357 HelloInterface.java
               5 File(s)          3,429 bytes
               2 Dir(s)  22,326,777,856 bytes free



34

#4: Write Startup code

 Contains main() method
 Create and export remote object
 Register remote object with RMI registry



35

Startup code example
import java.rmi.*;

public class HelloServer {

    public static void main(String[] argv) {
        try {
            // Create remote object and register with rmiregistry
            Naming.rebind("Hello", new HelloImpl());
            System.out.println("Hello Server is ready.");
        } catch (Exception e) {
            System.out.println("Hello Server failed: " + e);
        }
    }
}



36

RMI Registry

 RMI Registry is a simple naming service
 Bootstrap mechanism
 Typically is used by caller to get the remote 

reference of the first remote object
 Client gets reference to remote object - 

actually reference to stub object of the 
remote object



Writing RMI ClientWriting RMI Client  



38

Steps of Writing RMI Client

 Get a reference to the remote object 
implementation
 The registry returns the Stub instance of the 

remote object bound to that name
 Invoke remote methods



39

Client Example

import java.rmi.*;

public class HelloClient {

    /**
     * Client program for the "Hello, world!" example.
     * @param argv The command line arguments which are ignored.
     */
    public static void main(String[] argv) {
        try {
            HelloInterface hello =
                    (HelloInterface) Naming.lookup("Hello");
            String result = hello.sayHello("Sang Shin");       
            System.out.println(result);
        } catch (Exception e) {
            System.out.println("HelloClient exception: " + e);
        }
    }
}



40

Demo:Demo:
Exercise 1: “Hello World”Exercise 1: “Hello World”

RMI Server and ClientRMI Server and Client
1602_javase_rmi.zip1602_javase_rmi.zip



Dynamic Class Dynamic Class 
LoadingLoading



42

Dynamic Class Loading

 Class bytecodes (Class file) get 
downloaded during runtime
 When caller does not have the class 

bytecodes in local classpath
 RMI Stub needs to be downloaded to RMI 

Caller’s address space from somewhere
 Serialized copy of an object contains “where 

to get class bytecodes” information
 Codebase annotation



43

Who Does Provide Codebase 
Annotation Information?
 By the exporter of the class
 Via Export codebase (RMI codebase) 

property
 java.rmi.server.codebase
 Typically via HTTP URL



44

When Does the Codebase 
Annotation occurs?
 Whenever an object gets serialized
 For remote object

 Codebase information of Stub class
 For non-remote object

 Codebase information of normal class 



45

RMI Server and Client Deployment 
Scenario

 Both client and server have RMI Remote 
interface class in their local classpaths

 Server has HelloWorld_Stub class in its 
local classpath

 Client does not have HelloWorld_Stub 
class in its localpath
 He could, but is diminishes the whole 

purpose of class downloading
 Server exports HelloWorld_Stub class via 

HTTP server 



46

RMI Server and Client Deployment 
Scenario (Continued)

 Client gets HelloWorld_Stub serialized 
object from Registry
 Client typically does not have 

HelloWorld_Stub class in its local classpath
 So it will read the RMI codebase annotation 

(from the serialized stub object) and will try to 
download the HelloWorld_Stub class from 
the location specified in codebase annotation



Code (and Data) 
Movement



Code (and Data) Movement

 Performed in two phases
1. Serialized object (Marshalled Object) gets 

moved
2. Class files get downloaded

 Code
Represented by class files

 Data
Represented by state captured in 

serialized object



Serialized Object 

 Contains
Values of the fields of the object 
Name of the class 
Location of the class

 Via codebase annotation performed by the 
exporter of the class

 RMI codebase property



CodebaseCodebase



51

What is Codebase?

 Location where class bytecodes (Class 
files) reside



52

Two types of Codebase

 Import codebase 
 codebase your local VM uses to load classes 

it needs
 specified via CLASSPATH or -cp option

 Export codebase (RMI codebase)
 codebase remote VMs use to obtain the 

class files "exported" from your local VM
 specified via java.rmi.server.codebase 

property
 Codebase annotation



53

Behind the Scene Activities

 Any objects marshaled by a server will 
be annotated with RMI codebase
 For remote object, the stub object gets 

marshaled and annotated
 When a client instantiates the object, 

the bytecodes of the class will be 
downloaded by RMIClassloader from 
the location specified as RMI 
codebase 



54

RMI codebase forms 

 Could be in any URI form
 HTTP (Recommended)
 FTP
 FILE (Not recommended)

 Classes can be accessible via
 JAR
 Directory path

 Trailing slash required



55

RMI codebase

 RMI server
 Export classes that are needed by its client

 Stub classes for remote objects
 Interface classes of remote objects

– If client has the classes in its local classpath, no 
downloading occurs

 Any classes that are needed by the interface and 
stub classes

 RMI client 
 Export classes that are needed by the server

 Same as above



56

RMI codebase examples

 Directories need a trailing slash
 -Djava.rmi.server.codebase="file:/export/home/btm/classes/”
 -Djava.rmi.server.codebase= 

"http://daydreamer:8080/export/home/btm/root/dir/”

 Jar files do not need a trailing slash 
 -Djava.rmi.server.codebase= 

"file:/export/home/btm/jars/examples-dl.jar”
 -Djava.rmi.server.codebase= 

"http://daydreamer:8080/export/home/btm/jars/examples-dl.jar”

 You can specify multiple locations
 -Djava.rmi.server.codebase= 

"http://daydreamer:8080/export/home/btm/jars/examples-dl.jar  
http://daydreamer:8080/export/home/btm/root/dir/"



57

Demo:Demo:
Exercise 2: “Hello World”Exercise 2: “Hello World”

RMI Server and Client UsingRMI Server and Client Using
Export CodebaseExport Codebase

1602_javase_rmi.zip1602_javase_rmi.zip



58

Typical Causes of Problems

 The java.rmi.server.codebase (RMI codebase) property 
was not set at all 
 Do not use “localhost”

 RMI codebase was set, but HTTP server is not running 
 RMI codebase was set, HTTP server is running, but the 

class is not present under the proper path in HTTP 
server 

 The port number on which HTTP server is listening is not 
the same as the port number in the RMI codebase 

 The name of the host on which HTTP server is running 
is not the same as the hostname in the RMI codebase 

 If a non-jar URL is being used in the RMI codebase, 
there is no trailing slash (if class file location is in a jar 
file, no trailing slash is required) 



59

Typical RMI codebase 
Symptom
java.rmi.UnmarshalException: error unmarshalling 

return; nested exception is: 
     java.lang.ClassNotFoundException: 

example.testService_Stub
 Client could not download the stub class 

from the server



60

Typical RMI codebase 
Symptom
RemoteException occurred in server thread;  nested 

exception is: 
java.rmi.UnmarshalExceptionException: error 
unmarshalling arguments; nested exception is: 

    
java.lang.ClassNotFoundException:test.TestClient$
ServiceListener_Stub

 Server could not download the remote 
event listener stub class from the client
 See if stub was generated correctly (via RMIC)
 See if listener object was exported (via 

.exportObject() method)
 See if RMI codebase is set correctly by the client



61

Typical RMI codebase 
Symptom
 Things are working fine but when client 

and server are on different machines, I 
get ClassNotFoundException
 Very likely due to the fact that the class files 

are not available anymore 
 Do not use CLASSPATH for downloadable 

files
– Do use RMI codebase

 Do not use “localhost”



62

Implementation Guideline

 Client has remote interface class file in its 
local classpath (unless it uses reflection)

 The classes that are needed for 
implementation should be downloadable 
from the server 
 Stub classes
 Interface classes

 Needed when client does not have interface classes in 
its local path

 Any other classes that the stub and interface 
refers to

 Make jar file in the form of xxx-dl.jar



63

Example

 eventg/buildEventGenerator & eventg/runEventGenerator
[daydreamer] java -Djava.security.policy=/home/sang/src/examples/lease/policyEventGenerator 
-Djava.rmi.server.codebase=http://daydreamer:8081/EventGenerator-srvc-dl.jar 
http://daydreamer:8081/EventGenerator-attr-dl.jar -jar 
/home/sang/jars/EventGenerator.jar daydreamer

[daydreamer] jar -tvf EventGenerator-srvc-dl.jar
     0 Mon Mar 22 13:04:56 EST 1999 META-INF/
    66 Mon Mar 22 13:04:56 EST 1999 META-INF/MANIFEST.MF
   982 Mon Mar 22 13:04:04 EST 1999 examples/eventg/EventGenerator.class
  7933 Mon Mar 22 13:04:20 EST 1999 
examples/eventg/EventGeneratorImpl_Stub.class
  1532 Mon Mar 22 13:03:52 EST 1999 examples/eventg/TestLease.class
   911 Mon Mar 22 13:03:52 EST 1999 examples/eventg/TestLeaseMap.class
  1554 Mon Mar 22 13:04:00 EST 1999 examples/eventg/TestEventLease.class
   967 Mon Mar 22 13:04:00 EST 1999 examples/eventg/TestEventLeaseMap.class
   410 Mon Mar 22 13:03:56 EST 1999 examples/eventg/TestEvent.class

[daydreamer] jar -tvf EventGenerator-attr-dl.jar
     0 Mon Mar 22 13:05:14 EST 1999 META-INF/
    66 Mon Mar 22 13:05:14 EST 1999 META-INF/MANIFEST.MF
   752 Mon Mar 22 13:05:10 EST 1999 net/jini/lookup/entry/ServiceInfo.class
  1764 Mon Mar 22 13:05:12 EST 1999 
com/sun/jini/lookup/entry/BasicServiceType.class



64

Trouble-shooting methods

 Run HTTP server in verbose mode (Example next slide)
 Will display all the jar or class files being downloaded

 Set “-Djava.rmi.loader.logLevel=VERBOSE” on RMI 
client (Example next slide)
 Will tell which class file is being downloaded from 

which location
 Try “javap -classpath <pathlist or jar files>  

<classname>” on command line (Example next slide)
 Will tell what is really missing

 See if you can access the jar file using a browser 
 “Save as” dialog box pops up if the file is accessible

 Try FTP URL notation (instead of HTTP)
 If it works, HTTP has a problem



65

Running HTTP server in 
verbose mode

[daydreamer] java -cp /files/jini1_0/lib/tools.jar com.sun.jini.tool.ClassServer 
-port 8081   -dir /home/sang/jars -verbose

java -cp /home/sang/files/jini1_0/lib/tools.jar com.sun.jini.tool.ClassServe
ort 8081 -dir /home/sang/jars -verbose
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:65296
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:33431
RegRemoteAndProvideLease-srvc-dl.jar from daydreamer:33797
DiscoveryByGroup-srvc-dl.jar from daydreamer:37616
DiscoveryByGroup-srvc-dl.jar from daydreamer:37617
DiscoveryByGroup-attr-dl.jar from daydreamer:37620
DiscoveryByGroup-attr-dl.jar from daydreamer:37621
DiscoveryByLocator-srvc-dl.jar from daydreamer:37886
DiscoveryByLocator-srvc-dl.jar from daydreamer:37887



66

-Djava.rmi.loader.logLevel=VERBOSE

[daydreamer] java                                                                                        
-Djava.security.policy=/home/sang/src/examples/client/policyLookupSrvcAndInvoke                     -Dsun.rmi.loader.logLevel=VERBOSE 
                                                                  -jar /home/sang/jars/LookupSrvcAndInvoke.jar daydreamer

groupsWanted[0] = daydreamer
Waiting For Discovery to Complete

Wed Mar 17 07:43:01 EST 1999:loader:unicast discovery:LoaderHandler.loadClass: loading class "com.sun.jini.reggie.RegistrarProxy" from 
[http://daydreamer:8080/reggie-dl.jar]

.Wed Mar 17 07:43:02 EST 1999:loader:unicast discovery:LoaderHandler.loadClass: loading class "com.sun.jini.reggie.RegistrarImpl_Stub" 
from [http://daydreamer:8080/reggie-dl.jar]

LookupDiscoveryListener:  discovered...
  Lookup on host jini://daydreamer/:
    regGroups[0] belongs to Group: myGroup
    regGroups[1] belongs to Group: daydreamer
...........
Discovery of Available Lookups Complete.
Query each Lookup for known Services, the Invoke ...
Lookup Service on Host: jini://daydreamer/
  Belongs to Group: daydreamer
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "com.sun.jini.lookup.entry.BasicServiceType" from 

[http://daydreamer:8080/reggie-dl.jar]
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "net.jini.lookup.entry.ServiceInfo" from 

[http://daydreamer:8080/reggie-dl.jar]
Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "com.sun.jini.lookup.entry.BasicServiceType" from 

[http://daydreamer:8080/sun-util.jar, http://daydreamer:8081/RegRemoteAndProvideLease-srvc-dl.jar, 
http://daydreamer:8081/RegRemoteAndProvideLease-attr-dl.jar]

Wed Mar 17 07:43:13 EST 1999:loader:main:LoaderHandler.loadClass: loading class "net.jini.lookup.entry.ServiceInfo" from 
[http://daydreamer:8080/sun-util.jar, http://daydreamer:8081/RegRemoteAndProvideLease-srvc-dl.jar, 
http://daydreamer:8081/RegRemoteAndProvideLease-attr-dl.jar]



67

javap

[daydreamer:291] javap -classpath LookupSrvcAndInvoke.jar examples/lease/TestLease
Class 'examples/lease/TestLease' not found

[daydreamer:289] javap -classpath RegRemoteAndProvideLease-srvc-dl.jar examples/lease/TestLease
Error: No binary file 'AbstractLease’

[daydreamer:326] javap -classpath RegRemoteAndProvideLease.jar:sun-util.jar examples/lease/TestLease
Error: No binary file 'Lease'

[daydreamer:332] javap -classpath RegRemoteAndProvideLease.jar:sun-util.jar:jini-core.jar 
examples/lease/TestLease

Compiled from TestLease.java
public class examples/lease/TestLease extends com.sun.jini.lease.AbstractLease {
    protected final examples.lease.RegRemoteAndProvideLease server;
    protected final java.lang.String leaseID;
    protected examples/lease/TestLease(examples.lease.RegRemoteAndProvideLease,java.lang.String,long);
    public boolean canBatch(net.jini.core.lease.Lease);
    public void cancel() throws net.jini.core.lease.UnknownLeaseException, java.rmi.RemoteException;
    public net.jini.core.lease.LeaseMap createLeaseMap(long);
    public long doRenew(long) throws net.jini.core.lease.UnknownLeaseException, java.rmi.RemoteException;
    java.lang.String getLeaseID();
    examples.lease.RegRemoteAndProvideLease getRegRemoteAndProvideLease();
    void setExpiration(long);
}



68

javap

 admin/AdminServer registers with a lookup service without including 
OurOwnAdmin class file in its downloadable jar

 You will see unknown service on the Lookup browser

[daydreamer:230] cd ~sang/jars
[daydreamer:232] ls -lat Admin*
-rw-rw----   1 sang     jinieast    8035 Mar 22 21:19 AdminClient.jar
-rw-rw----   1 sang     jinieast    2083 Mar 21 23:44 AdminServer-attr-dl.jar
-rw-rw----   1 sang     jinieast    4953 Mar 21 23:44 AdminServer-srvc-dl.jar
-rw-rw----   1 sang     jinieast   13560 Mar 21 23:44 AdminServer.jar

[daydreamer:229] !226
javap -classpath AdminServer-srvc-dl.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'Administrable'

[daydreamer:229] javap -classpath AdminServer-srvc-dl.jar:jini-ext.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'DestroyAdmin'

[daydreamer:229] javap -classpath AdminServer-srvc-dl.jar:jini-ext.jar:sun-util.jar examples/admin/AdminServerImpl_Stub
Error: No binary file 'OurOwnAdmin'



69

Review Points

 RMI codebase 
 Used for exporting class files

 Serialized object has codebase annotation
 Set via java.rmi.server.codebase property
 Cause of most of ClassNotFoundException 

problems 



ClassLoader
Delegation



71

ClassLoader Delegation

 Introduced in JDK 1.2
 Class files are searched based on 

classloader hierarchy
 Bootstrap classloader
 Extension classloader
 Application classloader
 RMI classloader

 Ask parent classloader first
 Reason why a class file in local CLASSPATH 

gets picked up first before the same class file 
gets downloaded from remote location



72

Classloader Hierarchy

Bootstrap Classloader

Extension Classloader

Application Classloader

RMI Classloader

Delegation

RMI codebase

CLASSPATH

Bootstrap Classpath

Extension Classpath



73

Example

Local Classpath

Interface1 Interface1

Interface1Impl_Stub
RMI Classloader

Interface2

Interface2Impl_Stub

RMI Client RMI Server



Activation



75

Activation

 Why activatable objects?
 Service could be shut down inadvertently or 

intentionally
 Activatable service gets restarted automatically when 

system boots up or on-demand basis
 Activatable service needs to be started (registered with 

RMID) only once

 Activation system components
 RMID (Activation system daemon)
 RMID log file

 Persistently stores all activatable objects
 Default is <Directory where RMID gets started>/log directory 

 Activatable services 
 They are run as child processes of RMID



76

Control Flow of Activation

[A new activatable service with 
running RMID]

(5) Client, via lookup operation, retrieves 
the proxy object, which contains the 
RMI reference

(6) Client Stub talks to the service 
directly and gets an exception since 
the service (as an RMI server) is 
inactive

(7) Client Stub then talks to RMID

(9) Client now can talk directly with the 
service

(1) RMID running
(2) A new service registers with RMID 

and gets a special RMI reference 
-RMID logs the information in 
persistent storage

(3) The service (actually the proxy object) 
registers with the lookup service - the 
proxy object contains the RMI 
reference

(4) The service goes inactive 
(intentionally or inadvertently)

(8) RMID restarts the service if necessary 
in a new VM 



77

Control Flow of Activation

[RMID crash and reboot]

(5) Client, via lookup operation, retrieves 
the proxy object, which contains the 
RMI reference

(6) Client talks to the service directly .

(1) A service is registered with RMID
(2) RMID crashes and reboots
(3) RMID reads the log file and restarted 

the services (the ones which set the 
RESTART flag during the registration 
with RMID)

.

.



78

RMID 

 As long as RMID is running and RMID 
log file is persistent, a service can get 
started on “as needed” basis

 Methods of destroying a service
 Kill RMID and remove RMID log file 

 Other services will be destroyed as well
 Sledge hammer approach

 Use com.sun.jini.admin.DestroyAdmin 
interface’s destroy() method if the service 
supports it
 Recommended approach



79

Activation Trouble-shooting

 java.rmi.activation.ActivationException: 
ActivationSystem not running
 Possibly DNS lookup problem
 Try CTRL-\ (Solaris) and CTRL-BREAK (Win32) for stack 

trace
 Start RMID with                                                 

 -J-Dsun.rmi.server.activation.debugExec=true
 For any RMI properties you want to set for 

activatable services (child processes of RMID), start 
RMID with “-C-Dproperty=value”
 -C-Djava.rmi.server.logCalls=true



RMI Tunneling



81

RMI Tunneling

 Features
 Protocol runs over HTTP protocol
 Allows RMI client within a firewall to talk to an 

RMI server outside of the firewall 
 Limitation

 RMI server cannot talk back to the RMI client
 Implications to Jini

 No multicast discovery
 Have to use Unicast

 No event notification from RMI server to RMI 
client



RMI SecurityRMI Security



83

Java Security

 In Java, SecurityManager handles 
security control
 Based on security policy file
 Security policy define “permission control” 

based on
 Where the code came from
 Who signed the code
 Examples

– All code signed by Dave can write to a particular 
directory

– Any code downloaded from a particular HTTP 
server site has no filesystem access



84

Security Policy Example

 Give all all permission to any code
grant {
    permission java.security.AllPermission "", "";
};

 Use the above “all permission to all” only 
during testing
 Never use it in production environment 



85

Security Policy Example
grant codebase "file:${java.class.path}" {
    // file system dependent permissions for unix file system
    permission java.io.FilePermission "./*", "read,write,execute,delete"; 
    permission java.io.FilePermission "/tmp", "read,write,execute,delete"; 
    permission java.io.FilePermission "/tmp/-", "read,write,execute,delete"; 
    permission java.io.FilePermission "/var/tmp", "read,write,execute,delete"; 
    permission java.io.FilePermission "/var/tmp/-", "read,write,execute,delete"; 
    // uncomment this one if you need lookup to accept file: codebases
    // permission java.io.FilePermission "<<ALL FILES>>", "read";
    permission java.lang.RuntimePermission "modifyThreadGroup";
    permission java.lang.RuntimePermission "modifyThread";
    permission java.net.SocketPermission "*:1024-", "connect,accept";
    // for http: codebases
    permission java.net.SocketPermission "*:80", "connect";
    permission java.net.SocketPermission "224.0.1.84", "connect,accept";
    permission java.net.SocketPermission "224.0.1.85", "connect,accept";
    permission java.util.PropertyPermission "java.rmi.server.hostname", "read";
    permission java.util.PropertyPermission "com.sun.jini.reggie.*", "read";
    permission java.util.PropertyPermission "net.jini.discovery.*", "read";
    permission net.jini.discovery.DiscoveryPermission "*";
    // file system dependent permissions for windows file system
    permission java.io.FilePermission ".\\*", "read,write,execute,delete"; 
    permission java.io.FilePermission "c:\\temp", "read,write,execute,delete"; 
    permission java.io.FilePermission "c:\\temp\\-", "read,write,execute,delete"; 
    permission java.io.FilePermission "c:\\windows\\temp", "read,write,execute,delete"; 
    permission java.io.FilePermission "c:\\windows\\temp\\-", "read,write,execute,delete"; 
    // Deleted the rest
};



86

RMI Security

 Security is a serious concern since 
executable code is being downloaded 
from remote location 

 In RMI, SecurityManager has to be 
installed in order to be able to download 
any code from remote location
 Without its installation, RMI will search for 

class files only from local classpath
 The security policy file further specifies 

the “permission control”



87

RMI Security

 RMI client needs to install security 
manager because it needs to download 
Stub file of RMI object

 A simple RMI server might not need to 
install security manager if it does not 
need to download class files from remote 
location
 It is still good practice to install it anyway



Review Points 



89

Locating Remote Objects

client
server

registry

RMIRMI



90

Remote Communication

client
server

registry

RMIRMI

RMI



91

Loading Classes

client
server

web server
web server

registry

URL protocol

URL protocol

RMI

URL protocol

RMI

RMI



92

Method Invocation

reference

RMI runtimeRMI runtime

stub

caller’s VM remote object’s VM

remote object

dispatcher



93

RMI Limitation

 Client and server paradigm
 Client has to know about the server

 where the server is
 how to reach the server
 what the server can do

 If the server becomes unavailable, the client 
generally fails too



94

Summary

 RMI is for invoking methods of remote 
Java object

 Enables the movement of data and code
 Data (State of object) movement via 

serialized object
 Code movement via class downloading



95

                  Thank you!Thank you!

Sang ShinSang Shin
Michèle GarocheMichèle Garoche

http://www.javapassion.comhttp://www.javapassion.com
““Learn with Passion!”Learn with Passion!”

106


	Slide 1
	Topics
	Slide 3
	What is RMI?
	Slide 5
	Why RMI?
	Slide 7
	Architectural Components
	Remote Interface
	Slide 10
	Stub and Skeleton
	Slide 12
	Slide 13
	Remote Object
	Slide 15
	RMI Communication Model
	RMI Control Flow
	Slide 18
	Slide 19
	Serialization
	Marshaling and Unmarshaling
	Serialization in RMI 
	Serialization in RMI
	Example
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Dynamic Class Loading
	Slide 42
	Who Does Provide Codebase Annotation Information?
	When Does the Codebase Annotation occurs?
	RMI Server and Client Deployment Scenario
	Slide 46
	Dynamic Class Loading
	Review Points
	Slide 49
	 Codebase
	What is Codebase?
	Two types of Codebase
	Behind the Scene Activities
	RMI codebase forms 
	RMI codebase
	RMI codebase examples
	Slide 57
	Typical Causes of Problems
	Typical RMI codebase Symptom
	Slide 60
	Slide 61
	Implementation Guideline
	Slide 63
	Trouble-shooting methods
	Running HTTP server in verbose mode
	-Djava.rmi.loader.logLevel=VERBOSE
	javap
	Slide 68
	Review Points
	ClassLoader Delegation
	Slide 71
	Classloader Hierarchy
	Slide 73
	 Activation
	Activation
	Control Flow of Activation
	Slide 77
	RMID 
	Activation Trouble-shooting
	 RMI Tunneling
	RMI Tunneling
	RMI Security
	Java Security
	Security Policy Example
	Security Policy Example: for Reggie
	RMI/Jini Security
	Slide 87
	Review Points 
	Locating Remote Objects
	Remote Communication
	Loading Classes
	Method Invocation
	RMI Limitation
	Summary
	Slide 95

