
1

HTML5 Cross-DomainHTML5 Cross-Domain
MessagingMessaging

Sang ShinSang Shin
Founder and Chief InstructorFounder and Chief Instructor

JPassion.comJPassion.com
““Learn with Passion!”Learn with Passion!”

1

2

Topics
• Single Origin Policy (SOP)

• HTML5 Cross-domain messaging

• Cross-Origin Resource Sharing (CORS) & XHR2

3

Single Origin PolicySingle Origin Policy

4

What is Same Origin Policy?

• The same origin policy does not allow JavaScript code
loaded from one origin accessing or communicating with
documents from another origin
> In other words, documents retrieved from distinct origins are

isolated from each other

• JavaScript codes are considered from the same origin
only if they are loaded from the sites that have the same
> protocol (http:, https:, ws:, wss:)
> host
> port

• The same origin policy is imposed by browsers

5

Same Origin Policy Examples

• The JavaScript code from
http://store.company.com/dir/page.html can access the
following documents since they are considered from same
origin
> http://store.company.com/dir2/other.html
> http://store.company.com/dir/inner/another.html

• But it cannot access the following documents since they are
considered from different origins
> https://store.company.com/secure.html (different protocol)
> http://store.company.com:81/dir/etc.html (different port)
> http://news.company.com/dir/other.html (different host)

6

Why Same Origin Policy in the first place?

• In order to prevent Cross-site-scripting (XSS) security
risk

• In XSS, attackers inject client-side script into Web pages
viewed by other users

7

What is the downside of SOP?

• Same Origin Policy (SOP) makes it hard to do “mash-up”
> Because it disallows XMLHttpRequest object from accessing

documents from different origins
> What if I want the JavaScript code loaded from server A to access

data from Flickr, Google, Yahoo, etc through Ajax call

• SOP based security model of HTML
> Introduced in Netscape Navigator 2.0
> Is becoming a hindrance of writing Rich client application

• Work-arounds (not a desirable solutions, however)
> The client asks the server to access the document on behalf of it –

not efficient
> JSONP – security vulnerability

8

Issues of SOP dealt with in HTML5

• Issue #1
> A document running in a window A (or iframe A) cannot access a

document running in window B (or iframe B)
> HTML5 solves this through “Cross-Domain Messaging”

• Issue #2
> A document loaded from origin A cannot access service running in

Origin B through traditional XHR
> HTML5-enabled browsers supports Cross-Origin Resource Sharing

(CORS) and CORS-enabled XMLHttpRequest2 (XHR2)

9

HTML5 Cross-HTML5 Cross-
Domain MessagingDomain Messaging

10

What is & Why Cross-Domain Messaging?

• Before Cross-Domain Messaging, communications between
iframes, windows, tabs are disallowed by browser
> In order to prevent XSS

• Cross-Domain Messaging enables secure cross-domain
messaging across iframes, windows, tabs regardless of
origins of the documents they loaded
> These iframes, windows, tabs can send/receive data to/from other

iframes, windows, and tabs of different origins

11

Posting a Message to another iframe (from
Host window)
<body>
 <p> The source origin of this page is http://abc.domain1.com</p>
 <script>
 aframe = document.getElementById('iframe');

 // The source origin (of this page) gets constructed by the browser
 // and sent along to the target origin.

 // The target origin needs to be specified as a second argument
 aFrame.postMessage(
 “Hello world!”, // Message to post
 "http://def.domain2.com" // Target Origin
);
 </script>

 <p>Target iframe:</p>
 <iframe id="iframe" src="http://def.domain2.com/my_iframe.html"></iframe>

 </body>

12

Receiving a Message from the iframe (in
Host window)
• Add “onmessage” event handler

• The event handler receives “event”, which contains “data”,
“origin”, and “source” properties

• You need to check the “origin” to make sure the message is from
the trusted origin or origins

 <script>
 // Handle message received from the iframe
 window.addEventListener('message', function(e) {
 if (e.origin !== "http://def.domain2.com") { // filter origin for security reasons
 // Disregard the message since it is not from a valid origin
 } else {
 // e.data contains message from the sender
 }
 }, false);
 </script>

13

Lab:Lab:

Exercise 1: Cross-Domain MessagingExercise 1: Cross-Domain Messaging
1236_html5_messaging.zip1236_html5_messaging.zip

14

Cross-Origin Cross-Origin
Resource Sharing Resource Sharing
(CORS) & XHR2(CORS) & XHR2

15

What is CORS?

• W3C Working Draft that defines how the browser and server
must communicate when accessing sources across origins
> Currently supported by most browsers - Internet Explorer 8+,

Firefox 3.5+, Safari 4+, and Chrome

• The basic idea behind CORS is to use custom HTTP
headers to allow both the browser and the server to know
enough about each other to determine if the request or
response should succeed or fail
> This is to address the limitations of the JSONP

• Used when the server doesn't require cookie or session
based authentication to expose data for universal access

16

CORS Scheme

• The HTTP request is sent with an extra header called Origin
> The Origin header contains the origin (protocol, domain name, and

port) of the requesting page so that the server can easily determine
whether or not it should serve the response

> Origin: http://abc.domain1.com:8787

• If the server decides that the request should be allowed, it
sends a Access-Control-Allow-Origin header echoing back
the same origin that was sent or “*” if it’s a public resource
> If this header is missing, or the origins don’t match, then the

browser disallows the request
> Access-Control-Allow-Origin: http://abc.domain1.com:8787
> Access-Control-Allow-Origin: *

17

XMLHttpRequest2 (XHR2)

• Modern browsers create CORS-aware XHR object
(sometimes called XHR2) with the Origin header
automatically
> If the CORS-enabled server sends back with Access-Control-Allow-

Origin header with proper value, then the browser will allows cross-
domain access

var xhr = new XMLHttpRequest();
xhr.open("get", "http://abc.domain1.com:8787/some_resource/", true);
xhr.onload = function(){ //instead of onreadystatechange
 //do something
};
xhr.send(null);

18

Issues of CORS

• CORS is not yet available in old browsers (of course!)

• There are many existing services that don't yet take
advantage of this specification

19

Lab:Lab:

Exercise 2: CORS-aware XHR2Exercise 2: CORS-aware XHR2
1236_html5_messaging.zip1236_html5_messaging.zip

20

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

