
1

 Android UI Basics Android UI Basics

Sang ShinSang Shin
Michèle GarocheMichèle Garoche

www.javapassion.comwww.javapassion.com
““Learn with Passion!”Learn with Passion!”

2

Disclaimer
• Portions of this presentation are modifications

based on work created and shared by the
Android Open Source Project
> http://code.google.com/policies.html

• They are used according to terms described in
the Creative Commons 2.5 Attribution License
> http://creativecommons.org/licenses/by/2.5/

3

Topics
• Views
> View IDs
> Drawing of Views
> Focus handling

• Styles and themes
> Inheritance of styles
> Style properties
> Theme
> Built-in styles and themes

4

ViewsViews

5

View Tree
• All of the views in a window are arranged in a

single View tree.
• You can add views either from code or by

specifying a tree of views in one or more XML
layout files.

• There are many specialized subclasses of views
that are capable of displaying text, images, or
other content.

6

Things You Can do with Views
• Set properties
> The available properties and the methods that

set them will vary among the different
subclasses of views

> Properties that are known at build time can be
set in the XML layout files.

• Set focus
• Set up listeners
• Set visibility

7

Framework Responsibility
• The Android framework is responsible for

measuring, laying out and drawing views.
• You should not call methods that perform these

actions on views yourself unless you are
actually creating custom ViewGroup class

8

View IDsView IDs

9

IDs
• Views may have an integer id associated with

them.
• These ids are typically assigned in the layout

XML files, and are used to find specific views
within the view tree.

10

Example: IDs
• Define a Button in the layout file and assign it a

unique ID
 <Button id="@+id/my_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/my_button_text"/>

• From the onCreate method of an Activity, find
the Button
Button myButton =
 (Button) findViewById(R.id.my_button);

11

Drawing of ViewsDrawing of Views

12

Drawing
• Drawing is handled by walking the tree and

rendering each view
• Because the tree is traversed in-order, this

means that parents will draw before their
children, with siblings drawn in the order they
appear in the tree.

• If you set a background drawable for a View,
then the View will draw it for you before calling
back to its onDraw() method.

13

Focus HandlingFocus Handling

14

Focus Handling by the Framework
• Android framramework handles routine focus

movement in response to user input
> Changing the focus occurs as views are removed

or hidden, or as new views become available.
• Focus movement is based on a built-in

algorithm which finds the nearest neighbor in a
given direction.

15

Application Controlled Focus Handling
• In rare cases, the default algorithm may not

match the intended behavior of the developer.
In these situations, you can provide explicit
overrides by using these XML attributes in the
layout file
> nextFocusDown, nextFocusLeft, nextFocusRight,

nextFocusUp

16

Styles and ThemesStyles and Themes

17

What is a Style?
• A style is a collection of properties that specify

the look and format for a View
• A style can specify properties such as
> height, padding, font color, font size, background

color, and much more.
• A style is defined in an XML resource that is

separate from the XML that specifies the layout.

18

Separation of Design from Content
• Styles in Android share a similar philosophy to

cascading stylesheets in web design—they allow
you to separate the design from the content.

• Reusability also improves
• For example, by creating a new style resource file,

you can take this layout XML
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="#00FF00"
 android:typeface="monospace"
 android:text="@string/hello" />

• And turn it into
<TextView
 style="@style/CodeFont"
 android:text="@string/hello" />

19

Defining Style Resource
• To create a set of styles, save an XML file in the

res/values/ directory of your project.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="CodeFont"
 parent="@android:style/TextAppearance.Medium">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#00FF00</item>
 <item name="android:typeface">monospace</item>
 </style>
</resources>

20

Styles and Themes:Styles and Themes:
Inheritance of Inheritance of
StylesStyles

21

Inheritance of styles
• The parent attribute in the <style> element is

optional and specifies the resource ID of
another style from which this style should
inherit properties.

• You can then override the inherited style
properties if you want to.
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="CodeFont"
 parent="@android:style/TextAppearance.Medium">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#00FF00</item>
 <item name="android:typeface">monospace</item>
 </style>
</resources>

22

Inheritance of styles defined in the
same application
• If you want to inherit from styles that you've

defined yourself, you do not have to use the
parent attribute. Instead, just prefix the name
of the style you want to inherit to the name of
your new style, separated by a period.

• For example, to create a new style, Red, that
inherits the CodeFont style defined above, but
make the color red, you can author the new
style like this:
 <style name="CodeFont.Red">
 <item name="android:textColor">#FF0000</item>
 </style>

23

Styles and Themes:Styles and Themes:
Style PropertiesStyle Properties

24

Style Properties
• The best place to find properties that apply to a

specific View is the corresponding class
reference, which lists all of the supported XML
attributes.
> For example, all of the attributes listed in the

table of TextView XML attributes can be used in
a style definition for a TextView element (or one
of its subclasses)

• You can also use code-completion feature of
Eclipse IDE

25

Code-completion of Attributes

26

Example: Creating a style
• You might normally place the

android:inputType attribute in an <EditText>
<EditText
 android:inputType="number"
 ... />

• You can instead create a style for the EditText
element that includes this property:
<style name="Numbers">
 <item name="android:inputType">number</item>
 ...
</style>

• with your XML for the layout
<EditText
 style="@style/Numbers"
 ... />

27

Two Ways to Set a Style
• Option#1 - To an individual View, by adding the

style attribute to a View element in the XML for
your layout.

• Option #2 - To an entire Activity or application,
by adding the android:theme attribute to
<activity> or <application> element in the
Android manifest.

28

Option #1 - Applying a Style to a View
• When you apply a style to a single View in the

layout, the properties defined by the style are
applied only to that View.

<TextView
 style="@style/CodeFont"
 android:text="@string/hello" />

29

Option #2 - Applying a Style as a Theme
• You can apply a style so that it applies to all View

elements—by applying the style as a theme.
• To apply a style as a theme, you must apply the

style to an Activity or application in the Android
manifest.
> Every View within the Activity or application will

apply each property that it supports.
• Apply a theme to an application

<application android:theme="@style/CustomTheme">

• Apply a theme to an activity
<activity android:theme="@android:style/Theme.Translucent">

30

Android's Built-inAndroid's Built-in
Styles and ThemesStyles and Themes

31

Android's Built-in Styles and Themes
• The Android platform provides a large collection

of styles and themes that you can use in your
applications.

• You can find a reference of all available styles
in the R.style class.
> http://developer.android.com/reference/android/

R.style.html
• To use the styles listed above, replace all

underscores in the style name with a period.
> For example, you can apply the

Theme_NoTitleBar theme with
"@android:style/Theme.NoTitleBar".

32

R.style class

33

 Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

““Learn with Passion!”Learn with Passion!”

32

http://www.javapassion.com/codecamps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

