
1

MySQLMySQL
TransactionsTransactions

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1

2

Topics

• What is a transaction?
• ACID properties
• Transaction support in MySQL
• Savepoints
• Transaction isolation levels
• Table locks

What is a Transaction?What is a Transaction?

4

What is a Transaction?

• A transaction is a sequential group of database
manipulation operations, which is performed as if it
were one single work unit.

• Example: Transfer $100 from Savings account to
Checking account is made of two update operations -
these two operations need to be performed as a single
unit
> Update Savings table
> Update Checking table

ACID PropertiesACID Properties

6

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

7

ACID Properties

• Atomicity
> Ensures that all operations within the work unit are completed

successfully; otherwise, the transaction is aborted at the point
of failure, and previous operations are rolled back to their
former state

• Consistency
> Ensures that the database properly changes states upon a

successfully committed transactions

8

ACID Properties
• Isolation
> Ensures transactions to operate independently of and

transparent to each other

• Durability
> Ensures that the result or effect of a committed transaction

persists in case of a system failure

Transaction SupportTransaction Support
in MySQL in MySQL

10

MySQL Support of Transactions

• Only InnoDB storage engine supports transactions
> Other storage engines ignore transaction statements

• Starting a transaction
> START TRANSACTION;

• Ending a transaction
> COMMIT; for committing or
> ROLLBACK; for rolling back

11

Transaction COMMIT Example
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO person (person_id, first_name, last_name, age)
 -> VALUES
 -> (11, 'emma', 'kim', 11),
 -> (12, 'jisung', 'park', 22);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> COMMIT;
Query OK, 0 rows affected (0.05 sec)

12

Transaction ROLLBACK Example
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO person (person_id, first_name, last_name, age)
 -> VALUES
 -> (11, 'emma', 'kim', 11),
 -> (12, 'jisung', 'park', 22);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> ROLLBACK;
Query OK, 0 rows affected (0.05 sec)

13

Demo:Demo:

Exercise 1, 2: Commit & RollbackExercise 1, 2: Commit & Rollback
Exercise 3: InnoDBExercise 3: InnoDB

1610_mysql_basics1.zip1610_mysql_basics1.zip

SavepointsSavepoints

15

Savepoints

• User-defined points within a transaction that can be
used for partial roll back
> Reverse all changes made after the savepoint

• Syntax
> ROLLBACK TO SAVEPOINT <savepoint-name>

16

Savepoint Example
// Start a new transaction
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

// Insert a new record 31 within the transaction
mysql> INSERT INTO person (person_id, first_name, last_name, age)
 -> VALUES (31, 'hannah', 'song', 15);
Query OK, 1 row affected (0.00 sec)

// Perform SAVEPOINT and name it as "person31"
mysql> SAVEPOINT person31;
Query OK, 0 rows affected (0.00 sec)

// Insert a new record 32
mysql> INSERT INTO person (person_id, first_name, last_name, age)
 -> VALUES (32, 'dadu', 'kim', 25);
Query OK, 1 row affected (0.00 sec)

mysql> ROLLBACK TO SAVEPOINT person31;
Query OK, 0 rows affected (0.00 sec)

17

Demo:Demo:

Exercise 4: SavepointsExercise 4: Savepoints
1610_mysql_basics1.zip1610_mysql_basics1.zip

Transaction IsolationTransaction Isolation
LevelsLevels

19

4 Isolation Levels

• READ UNCOMMITTED
> Provides lowest level of isolation among transactions but

best performing

• READ COMMITTED
• REPEATABLE READ
• SERIALIZABLE
> Provides the highest level of isolation among transactions but

least performing

20

READ UNCOMMITTED Isolation level

• Causes 'dirty reads' symptom
> Uncommitted changes in one transaction (client #1 below) is

visible in other transactions (client #2 below)

Client #1: Start Transaction----INSERT a record A---------------------------------ROLLBACK------------------------------->

Client #2: Start Transaction---------------------------(See Record A:Dirty read)--------------(Does not see Record A)-->

21

READ COMMITTED Isolation level

• Committed updates in one transaction (client # 1 below)
are visible within another transaction (client #2 below)

• This means identical queries within a transaction (in client
#2 below) can return differing results

Client #1: Start Transaction----INSERT a record A------------COMMIT-->

Client #2: Start Transaction----------------(Not see Record A)----------(See Record A)------COMMIT------>

22

REPEATABLE READ Isolation level

• Committed changes in one transaction (client #1 below) is
visible in another transaction (client #2 below) only after its
own Commit.
> Within a transaction, all reads are consistent.

• The default isolation level for InnoDB tables.

Client #1: Start Transaction----INSERT a record A------------COMMIT--->

Client #2: Start Transaction----------------(Not see Record A)---------------COMMIT--(See Record A) ---->

23

 SERIALIZABLE Isolation level

• Transactions are serialized
• Until the previous transaction ends via either COMMIT or

ROLLBACK, the database operations in other transactions
are blocked

• Highest isolation level but not practical in real-life
environment due to its low performance

Client #1: Start Transaction----INSERT a record A----------------------COMMIT--->

Client #2: Start Transaction----------------------------(SELECT Blocked)----------- (SELECT returns)--COMMIT---->

24

Demo:Demo:

Exercise 5: Isolation LevelsExercise 5: Isolation Levels
1610_mysql_basics1.zip1610_mysql_basics1.zip

Table LocksTable Locks

26

When to Use Table Locks?

• For non-InnoDB storage engines, every change is
immediately saved to disk - not suitable for multi-user
environment where transactional behavior is essential

• Table locks can be used to simulate the transactional
properties in non-InnoDB storage engines

• Table locks are not as fined grained as “row lock” or
“page (a set of rows) lock”

• Two types of table locks
> READ, WRITE

27

READ Table lock

• Anybody can read data from the table
• Nobody can make a change to the table until the lock is

released
• Syntax
> LOCK TABLE person READ;
> UNLOCK TABLES;

28

WRITE Table lock

• The client who issued the WRITE table lock can read
and make change to the table

• Others cannot either read or write until the lock is
released

• Syntax
> LOCK TABLE person WRITE;
> UNLOCK TABLES;

29

Demo:Demo:

Exercise 5: LocksExercise 5: Locks
1610_mysql_basics1.zip1610_mysql_basics1.zip

30

 Thank you!Thank you!

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

