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Topics

• What is a transaction?
• ACID properties
• Transaction support in MySQL 
• Savepoints
• Transaction isolation levels
• Table locks
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What is a Transaction?

• A transaction is a sequential group of database 
manipulation operations, which is performed as if it 
were one single work unit.

• Example: Transfer $100 from Savings account to 
Checking account is made of two update operations - 
these two operations need to be performed as a single 
unit
> Update Savings table 
> Update Checking table
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ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability
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ACID Properties

• Atomicity
> Ensures that all operations within the work unit are completed 

successfully; otherwise, the transaction is aborted at the point 
of failure, and previous operations are rolled back to their 
former state

• Consistency
> Ensures that the database properly changes states upon a 

successfully committed transactions
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ACID Properties
• Isolation
> Ensures transactions to operate independently of and 

transparent to each other

• Durability
> Ensures that the result or effect of a committed transaction 

persists in case of a system failure



Transaction SupportTransaction Support
in MySQL in MySQL 
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MySQL Support of Transactions

• Only InnoDB storage engine supports transactions
> Other storage engines ignore transaction statements

• Starting a transaction
> START TRANSACTION;

• Ending a transaction
> COMMIT; for committing or 
> ROLLBACK; for rolling back
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Transaction COMMIT Example
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO person (person_id, first_name, last_name, age)
    -> VALUES
    -> (11, 'emma', 'kim', 11),
    -> (12, 'jisung', 'park', 22);
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> COMMIT;
Query OK, 0 rows affected (0.05 sec)
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Transaction ROLLBACK Example
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO person (person_id, first_name, last_name, age)
    -> VALUES
    -> (11, 'emma', 'kim', 11),
    -> (12, 'jisung', 'park', 22);
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> ROLLBACK;
Query OK, 0 rows affected (0.05 sec)
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Demo:Demo:

Exercise 1, 2: Commit & RollbackExercise 1, 2: Commit & Rollback
Exercise 3: InnoDBExercise 3: InnoDB

1610_mysql_basics1.zip1610_mysql_basics1.zip
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Savepoints

• User-defined points within a transaction that can be 
used for partial roll back
> Reverse all changes made after the savepoint

• Syntax
> ROLLBACK TO SAVEPOINT <savepoint-name> 
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Savepoint Example
// Start a new transaction
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

// Insert a new record 31 within the transaction
mysql> INSERT INTO person (person_id, first_name, last_name, age)
    -> VALUES (31, 'hannah', 'song', 15);
Query OK, 1 row affected (0.00 sec)

// Perform SAVEPOINT and name it as "person31"
mysql> SAVEPOINT person31;
Query OK, 0 rows affected (0.00 sec)

// Insert a new record 32
mysql> INSERT INTO person (person_id, first_name, last_name, age)
    -> VALUES (32, 'dadu', 'kim', 25);
Query OK, 1 row affected (0.00 sec)

mysql> ROLLBACK TO SAVEPOINT person31;
Query OK, 0 rows affected (0.00 sec)
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Demo:Demo:

Exercise 4: SavepointsExercise 4: Savepoints
1610_mysql_basics1.zip1610_mysql_basics1.zip
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4 Isolation Levels

• READ UNCOMMITTED
> Provides lowest level of isolation among transactions but 

best performing

• READ COMMITTED
• REPEATABLE READ
• SERIALIZABLE
> Provides the highest level of isolation among transactions but 

least performing
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READ UNCOMMITTED Isolation level

• Causes 'dirty reads' symptom
> Uncommitted changes in one transaction (client #1 below) is 

visible in other transactions (client #2 below)

Client #1:  Start Transaction----INSERT a record  A---------------------------------ROLLBACK------------------------------->

Client #2:  Start Transaction---------------------------(See Record A:Dirty read)--------------(Does not see Record A)-->
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READ COMMITTED Isolation level

• Committed updates in one transaction (client # 1 below) 
are visible within another transaction (client #2 below)

• This means identical queries within a transaction (in client 
#2 below) can return differing results

 
Client #1:  Start Transaction----INSERT a record  A------------COMMIT------------------------------------------>

Client #2:  Start Transaction----------------(Not see Record A)----------(See Record A)------COMMIT------>
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REPEATABLE READ Isolation level

• Committed changes in one transaction (client #1 below) is 
visible in another transaction (client #2 below) only after its 
own Commit.
> Within a transaction, all reads are consistent.

• The default isolation level for InnoDB tables.

 
Client #1:  Start Transaction----INSERT a record  A------------COMMIT------------------------------------------->

Client #2:  Start Transaction----------------(Not see Record A)---------------COMMIT--(See Record A)  ---->
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 SERIALIZABLE Isolation level

• Transactions are serialized
• Until the previous transaction ends via either COMMIT or 

ROLLBACK, the database operations in other transactions 
are blocked

• Highest isolation level but not practical in real-life 
environment due to its low performance

 
Client #1:  Start Transaction----INSERT a record  A----------------------COMMIT----------------------------------------->

Client #2:  Start Transaction----------------------------(SELECT Blocked)----------- (SELECT returns)--COMMIT---->
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Demo:Demo:

Exercise 5: Isolation LevelsExercise 5: Isolation Levels
1610_mysql_basics1.zip1610_mysql_basics1.zip
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When to Use Table Locks?

• For non-InnoDB storage engines, every change is 
immediately saved to disk - not suitable for multi-user 
environment where transactional behavior is essential

• Table locks can be used to simulate the transactional 
properties in non-InnoDB storage engines

• Table locks are not as fined grained as “row lock” or 
“page (a set of rows) lock” 

• Two types of table locks
> READ, WRITE
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READ Table lock

• Anybody can read data from the table
• Nobody can make a change to the table until the lock is 

released
• Syntax
> LOCK TABLE person READ;
> UNLOCK TABLES;
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WRITE Table lock

• The client who issued the WRITE table lock can read 
and make change to the table

• Others cannot either read or write until the lock is 
released

• Syntax
> LOCK TABLE person WRITE;
> UNLOCK TABLES;
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Demo:Demo:

Exercise 5: LocksExercise 5: Locks
1610_mysql_basics1.zip1610_mysql_basics1.zip
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        Thank you!Thank you!
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