
1

Ruby LanguageRuby Language
Basics IBasics I

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What is Ruby?

• Ruby naming convention

• Interactive Ruby (IRB)

• Ruby object

• Ruby types
> String, Hash, Symbol

• Ruby class

• Inheritance

• 3 ways of creating a Ruby object

What is Ruby?What is Ruby?

4

Ruby is…Ruby is…

 A dynamic, open source A dynamic, open source
programming language with a programming language with a
focus on focus on simplicitysimplicity and and
productivityproductivity. It has an elegant . It has an elegant
syntax that is natural to read syntax that is natural to read
and easy to write.and easy to write.

http://www.ruby-lang.org

5

Ruby as a Programming Language

• Dynamically typed

• Optimized for people
> Easy to read and write
> Powerful
> Fun

• Everything is an object
> There are no primitives - Java language has primitives

which are not objects

6

Ruby Language History

• Created 1993 by Yukihiro “Matz” Matsumoto
> “More powerful than Perl and more OO than Python”

• Ruby 2.1.2 is current (as of July 2014)

Ruby NamingRuby Naming
Conventions Conventions

8

Ruby Naming Conventions

• Ruby file - .rb suffix
> myprog.rb

• Class & Module names – MixedCase
> MyClass

• methods - lower case with underscores
> my_own_method

• local variables – lower case with underscores (same as methods)
> my_own_variable
> One reason why should use lower case is that if you Capitalize the

first letter, Ruby will define a constant instead of a variable
> number = 1 # regular variable
> Pi = 3.14159 # constant

9

Ruby Naming Conventions

• Instance variables - @ prefix to variable name
> @my_instance_variable

• Class variables – @@ prefix to variable name
> @@my_class_variable

• Global variables - $ prefix to variable name (rarely used)
> $my_global_variable

• Constants
> UPPER_CASE

IRB (Interactive Ruby)IRB (Interactive Ruby)

11

IRB (Interactive Ruby)

• When learning Ruby, you will often want to experiment with new
features by writing short snippets of code. Instead of writing a lot
of small text files, you can use irb, which is Ruby's interactive
mode.

• You can use irb at the command line
$ irb --simple-prompt
>> 2+2
=> 4
>> 5*5*5
=> 125
>> quit

12

IRB

13

Lab:Lab:

Exercise 1: Writing Ruby ProgramsExercise 1: Writing Ruby Programs
5508_ruby_basics1.zip 5508_ruby_basics1.zip

Ruby Object Ruby Object

15

In Ruby, Everything is an Object

• Like Smalltalk, Ruby is a pure object-oriented language —
everything is an object

• In contrast, languages such as C++ and Java are hybrid
languages that divide the world between objects and primitive
types
> The hybrid approach results in better performance for some

applications, but the pure object-oriented approach is more
consistent and simpler to use

16

What is an Object?
• Using Smalltalk terminology, an object can do exactly three

things.
> Hold state, including references to other objects.
> Receive a message, from both itself and other objects.
> In the course of processing a message, send messages, both to itself and to

other objects.

• If you don't come from Smalltalk background, it might make
more sense to rephrase these rules as follows:
> An object can contain data, including references to other objects.
> An object can contain methods, which are functions that have special access

to the object's data.
> An object's methods can call/run other methods/functions.

17

In Ruby, Everything Is An Object

• 'Primitives' are objects
> -1.abs # Invoke abs() method of an object

• nil is an object
> nil.methods # Invoke methods() method of an object – display all

methods available from nil object

• Classes are objects
> Song.new – invoking the “new” class method on “Song” class -

Create instances of themselves

• Code blocks can be converted into objects (Proc's)
> They can be pass around, even as parameters or return value
> Basis for enabling closure

18

Variables and Objects

• Create a String object containing the text "Stephen Colbert". We
also told Ruby to use the variable comedian to refer to this
object. (Works the same as in Java)
>> comedian = "Stephen Colbert"
=> "Stephen Colbert"

Ruby Types Ruby Types

20

Ruby Types

• String

• Number

• Symbol
> New concept if you are coming from Java background

• Array

• Hash

Ruby Types:Ruby Types:
StringsStrings

22

String Literals

• One way to create a String is to use single or double quotes
inside a Ruby program to create what is called a string literal
puts 'Hello world'
puts "Hello world"

• Double quotes allow you to embed variables or Ruby code
inside of a string literal – this is commonly referred to as
interpolation
def my_method(name)
 puts "Your name is #{name}"
end

23

String Literals with Interpolation

• Notation
> #{expression}

• Expression can be an arbitrary Ruby expression

• If variable that is referenced by #{expression} is not available
(has not been assigned), a NameError exception will be raised:
 "trying to print #{undefined} variable"
 NameError: undefined local variable or method `undefined' for

main:Object

24

Escape Sequences

• \" – double quote

• \\ – single backslash

• \a – bell/alert

• \b – backspace

• \r – carriage return

• \n – newline

• \s – space

• \t – tab

25

Escape Sequences

puts "Hello\t\tworld"

puts "Hello\b\b\b\b\bGoodbye world"

puts "Hello\rStart over world"

puts "1. Hello\n2. World”

26

puts and print

• puts automatically prints out a newline after the text
>> puts "Say", "hello"
Say
hello

• print function only prints out a newline if you specify one
>> print "Say", "hello", "\n"
Sayhello

27

% Notation

• %w causes breaks in white space to result in a string array
> %w(a b c)
> => ["a", "b", "c"]

Ruby Types:Ruby Types:
SymbolsSymbols

29

What is Symbol?
• A Ruby symbol is the internal representation of a name

• It is a class in Ruby language
:my_value.class #=> Symbol

• You construct the symbol for a name by preceding the name with a
colon.
:my_symbol

• Atomic, immutable and unique
> Can't be parsed or modified
> All references to a symbol refer to the same object

:my_value.equal?(:my_value) #=> true
"my_value".equal?("my_value") #=> false

30

Symbols

31

Symbols vs. Strings
• Symbols are always interchangeable with strings
> In any place you use a string in your Ruby code, you can use a symbol

• Important reasons to use a symbol over a string
> If you are repeating same string many times in your Ruby code, let's say

10000 times, it will take 10000 times of memory space of the string while if
you are using a symbol, it will take a space for a single symbol

• Minor reasons to use a symbol over a string
> Symbol is easier to type than string (no quotes to type)
> Symbol stands out in the editor
> The different syntax can distinguish keys from values in hash

:name => 'Sang Shin'

Ruby Types:Ruby Types:
HashHash

33

Hash

• Hashes are basically key-value pairs (like a Map in Java)
> Each key should be unique

• A hash object is created by writing Hash.new or by writing
an optional list of comma-separated key => value pairs
(“=>” is called Rocket) inside curly braces (most common
form of creating a hash)

hash_one = Hash.new # Similar to Java
hash_two = {} # Shorthand for Hash.new
hash_three = {"a" => 1, "b" => 2, "c" => 3} # Most common form

34

Hash and Symbol
• Instead of

hash_sym = { “a” => 1, “b”=> 2, “c” => 3}
• Usually Symbols (instead of Strings) are used as Hash keys, so

you will see hashes declared like following:
hash_sym = { :a => 1, :b => 2, :c => 3}

• From Ruby 1.9, a simplified notation for =>
hash_sym = { a: 1, b: 2, c: 3}

35

Where Do Symbols Typically Used?
• Symbols are often used as
> Hash keys (:name => 'Brian', :hobby => 'golf')

> Arguments of a method (:name, :title)

> Method names (:post_comment)

• Symbols are used in Rails pervasively

36

Lab:Lab:

Exercise 2: Ruby TypesExercise 2: Ruby Types
5508_ruby_basics1.zip 5508_ruby_basics1.zip

Ruby Class and Objects Ruby Class and Objects

38

Ruby Classes

• Every object in Ruby is created from a class. To find the class of
an object, simply call that object's class method.

 "This is a string".class #=> String
 9.class #=> Fixnum
 ["this","is","an","array"].class #=> Array
 {:this => "is", :a => "hash"}.class #=> Hash
 {this: "is", a: "hash"}.class #=> Hash (from Ruby 1.9)
 :symbol.class #=> Symbol

39

Ruby Classes

40

Defining a Class

• Use class keyword

 # Define Chocolate class
 class Chocolate
 def eat
 puts "That tasted great!"
 end
 end

41

Instantiation of an Object

• An object instance is created from a class through the a process
called instantiation (like in Java)

• In Ruby, this takes place through a Class method new (similar to
Java)
 an_object = MyClass.new(parameters)

• The above sets up the object in memory and then delegates
control to the initialize function of the MyClass class if it is
present. Parameters passed to the new function are passed into
the initialize function.
 class MyClass
 def initialize(parameters)
 end
 end

42

Class Example
• Simple RocketShip Class – We will study this code in the

following slides

class RocketShip < Object
 attr_accessor :destination

 def initialize(destination)
 @destination = destination
 end

 def launch()
 "3, 2, 1 Blast off!"
 end
end

43

Class Example
• Single Inheritance

class RocketShip < Object # < Object is optional
 # like in Java
 attr_accessor :destination

 def initialize(destination)
 @destination = destination
 end

 def launch()
 "3, 2, 1 Blast off!"
 end
end

44

Class Example
• Constructors in Ruby are named initialize

class RocketShip < Object
 attr_accessor :destination

 def initialize(destination)
 @destination = destination
 end

 def launch()
 "3, 2, 1 Blast off!"
 end
end

new() allocates a RocketShip instance and initialize()
is called for initializing that instance
r = RocketShip.new('Netptune')

45

Class Example
• Attributes are easily defined with attr_accessor

class RocketShip < Object
 # No need to define getter and setter for an attribute
 attr_accessor :destination

 def initialize(destination)
 @destination = destination
 end

 def launch()
 "3, 2, 1 Blast off!"
 end
end

r = RocketShip.new
r.destination = 'Saturn' # Set the attribute with value

Ruby Class:Ruby Class:
Inheritance Inheritance

47

Inheritance

• A class can inherit functionality and variables from a super
class, sometimes referred to as a parent class or base class.
(Like in Java)

• Ruby does not support multiple inheritance and so a class in
Ruby can have only one super class. (Like in Java)

• All non-private variables and functions are inherited by the child
class from the super class. (Like in Java)

48

Overriding a method
• If your class overrides a method from parent class (super class),

you still can access the parent's method by using 'super'
keyword
class ParentClass # This is a parent classs
 def a_method # This parent class has a_method method
 puts 'b'
 end
end

class ChildClass < ParentClass # This is a child class
 def a_method # and it overrides a_method method
 super # Call a_method of a parent class
 puts 'a'
 end
end

instance = ChildClass.new
instance.a_method

3 Ways of Creating3 Ways of Creating
Ruby Object Ruby Object

50

Ruby Object Can Be Created in 3
Different Ways
• Constructor parameters in a hash

 user = User.new(:name => "Shin", :occupation => "Daydreamer")
 user = User.new :name => "Shin", :occupation => "Daydreamer"

• Create a bare object and then set attributes
 user = User.new
 user.name = "Shin"
 user.occupation = "Daydreamer"

• Use block initialization (we will learn about block later on)
 user = User.new do |u|
 u.name = "Shin"
 u.occupation = "Daydreamer"
 end

51

Lab:Lab:

Exercise 3: Ruby Class & ObjectsExercise 3: Ruby Class & Objects
5508_ruby_basics1.zip 5508_ruby_basics1.zip

52

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

