
1

Ruby LanguageRuby Language
Basics IIBasics II

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics
• Methods Basics

• Methods Advanced
> Arguments, Visibility, Method with a ! (bang)

• Modules

• Control structures

• Exception handling

• Ruby operators

• Regular expression

Method BasicsMethod Basics

4

Method Definitions

• Methods are defined using the keyword def followed by the
method name and a set of arguments

 def my_method1 (argument1, argument2)
 puts (argument1, argument2)
 end

 # Parentheses (..) are optional both in method definition
 # as well as in method invocation
 def my_method2 argument1, argument2 # method definition
 puts argument1, argument2 # method invocation
 end

5

Class Method vs. Instance Method
• A class can contain both class and instance methods

• Class method is defined with self.<method_name>
class MyClass
 def self.find_everybody # class method

User.find(:all)
 end
 def my_instance_method # instance method
 end
end

• Class method is invoked with a class
 MyClass.find_everybody

6

How to Invoke Methods

• Methods are called using the following syntax:
method_name (argument1, argument2,…)

• The parentheses can be omitted
method_name argument1, argument2 # with arguments
method_name # with no arguments

• If you use method result immediately for calling another method,
however, then you have to use parentheses:
A method returns an array and we want to reverse
element order of the returned array using “reverse”
method of Array class.
results = method_name (argument1, argument2).reverse

7

Return Value of a Method

• A method returns the value of the last expression evaluated
– return statement is optional

 # return value of x+y expression
 def add_method (x,y)
 puts “something”
 x + y # return statement is optional
 end

8

Explicit “return” statement
• An explicit “return” statement can also be used to return

from function with a value, prior to the end of the function
declaration
 def add_method(x,y)
 return x + y
 puts “this is not evaluated”
 end

• This is useful when you want to terminate a loop or return
from a function as the result of a conditional expression

9

Lab:Lab:

Exercise 0: Ruby Method BasicsExercise 0: Ruby Method Basics
5509_ruby_basics2.zip 5509_ruby_basics2.zip

Methods:Methods:
ArgumentsArguments

11

Default Value Argument

• A default argument value can be specified in method
definition
 def some_method(value='default', arr=[])
 puts value
 puts arr.length
 end
 some_method('something') # arr is not passed

• The method call above will output:
something
 0 (default argument value [].length)

12

Variable Length Argument List

• The last argument of a method may be preceded by an
asterisk(*), which is sometimes called the 'splat' operator - this
indicates that more arguments may be passed to the function.
Those arguments are collected up and an array is created.

def calculate_value(x,y,*otherValues)
 puts otherValues # otherValues is an array
 end

 calculate_value(1,2,'a','b','c') # ['a', 'b', 'c']
 calculate_value(1,2,'a','b','c', 'd') # ['a', 'b', 'c', 'd']

13

Array Argument as “*array”

• The asterisk (*) operator may also precede an Array
argument in a method call. In this case the Array will be
expanded and the values passed in as if they were
separated by commas.
 arr = ['a','b','c']
 calculate_value(*arr)

• has the same result as:
calculate_value('a','b','c')

14

Passing a Hash as an Argument

• Another technique that Ruby allows is to pass a Hash
argument when invoking a function, and that gives you best
of all worlds - named arguments, and variable argument
length

• Very common in Ruby/Rails programming
 def accepts_hash(var)
 print "got: ", var.inspect # will print out what it received
 end

 # Pass a hash as an argument
 accepts_hash({:arg1 => 'giving arg1', :argN => 'giving argN'})
 # => got: {:argN=>"giving argN", :arg1=>"giving arg1"}

15

Parentheses () for the Arguments,
Braces { } for a Hash Argument
• Parentheses can be omitted for the arguments

• If the last argument is a Hash, braces { } of the Hash can be
omitted as well. The following three work the same.

Arguments are enclosed with (), hash is enclosed with braces { }
accepts_hash({ :arg1 => 'giving arg1', :argN => 'giving argN' })

Argument are enclosed with (), but no { } for a hash argument
accepts_hash(:arg1 => 'giving arg1', :argN => 'giving argN')

No () for arguments, no { } for a hash - very common
accepts_hash :arg1 => 'giving arg1', :argN => 'giving argN'
accepts_hash arg1: 'giving arg1', argN: 'giving argN' (from Ruby 1.9)

16

Calling a Method with a Code Block

• Note: We have not learned Code block yet.. so if you don't
understand things on this page, that is fine...

• If you are going to pass a code block to function, however,
you need parentheses for arguments – we will learn about
code block later on

You need parentheses for arguments since there is a block
accepts_hash(:arg1 => 'giving arg1', :argN => 'giving argN') { |s| puts s }
accepts_hash({ :arg1 => 'giving arg1', :argN => 'giving argN' }) { |s| puts s }

Compile error since there is no () with code block
accepts_hash :arg1 => 'giving arg1', :argN => 'giving argN' { |s| puts s }

code block

Methods:Methods:
Method with a ! (Bang)Method with a ! (Bang)

18

Method with ! (Bang)

• In Ruby, methods that end with an exclamation mark (also
called a "bang") modify the object

• Methods that do not end in an exclamation point return
data, but do not modify the object.
>> x="jpassion"
=> "jpassion"

>> x.upcase
=> "JPASSION"
>> x
=> "jpassion"

>> x.upcase!
=> "JPASSION"
>> x
=> "JPASSION"

Methods:Methods:
VisibilityVisibility

20

Declaring Visibility

• By default, all methods in Ruby classes are public -
accessible by anyone

• If desired, this access can be restricted by private,
protected object methods
> It is interesting that these are not actually keywords, but

actual methods that operate on the class, dynamically
altering the visibility of the methods

21

private
• The private methods methods can be called only from within the

calling object
> You cannot access another instance's private methods directly.
> If private is invoked without arguments, it sets access to private

for all subsequent methods.
• The protected methods can be called by any instance of the defining

class or its subclasses.

 class Example
 def methodA
 end
 private # all methods that follow will be made private:
 # not accessible by outside object
 def methodP
 end
 end

22

Declaring Visibility: private

• private method can be invoked with named arguments -
altering the visibility of methodP to private in the example
below

class Example
 def methodA
 end

 def methodP
 end

 private :methodP # change the visibility of methodP to private
 end

23

Lab:Lab:

Exercise 1: Method AdvancedExercise 1: Method Advanced
5509_ruby_basics2.zip5509_ruby_basics2.zip

ModulesModules

25

What is a Module?
• Modules are way of grouping together some functions and

variables and classes, thus providing namespaces
> Similar to Java packages, which provides namespaces

for Java classes
• A class “C” in a Module “M” is referenced as M::C

• Methods can be present in a Module

• A Module cannot be instantiated – object cannot be created
 from a module

26

Module Provides Namespace
 puts "----Define People module with Stalk class"

module People
 class Stalk
 def about
 "I am a person."
 end
 end
end

puts "----Define Plants module with Stalk class"
module Plants
 class Stalk
 def about
 "I am a plant."
 end
 end
end

puts "----Create an instance of Stalk class of People Module"
a = People::Stalk.new

puts "----Create an instance of Stalk class of Plants Module"
b = Plants::Stalk.new

27

Mix-in with a module
• A module can contain just methods (instead of classes)

• You can “include” a module into a class - it is called Mix-in
module Aeronautics
 def launch() # A module can have a method
 "3, 2, 1 Blastoff!"
 end
end

class RocketShip
 include Aeronautics # Include a module
end

r = RocketShip.new
puts r.launch # You can invoke a method
 # of an included module

28

Mix-in with multiple modules
• You can mix in as many modules as you like

module Aeronautics
 def launch()
 "3, 2, 1 Blastoff!"
 end
end

module Calculator
 def add(x, y)
 x + y
 end
end

class RocketShip
 include Aeronautics
 include Calculator
end

r = RocketShip.new
puts r.launch # 3, 2, 1 Blastoff!
puts r.add(3, 4) # 7

29

Requiring a Module

• If your module is in another file, you must first require that
module before you can use it in include statement

require './RubyModule_define'

puts "----Create MyNumber class which includes Stringify module"
class MyNumber
 include Stringify # "Stringify" module is defined in "RubyModule_define.rb"
 def initialize(value)
 @value = value
 end
end

puts "----Create MyNumber object and call stringify method from the Stringify module"
my_number = MyNumber.new(2)
puts my_number.stringify # Should print Two

30

Lab:Lab:

Exercise 3: ModulesExercise 3: Modules
5509_ruby_basics2.zip5509_ruby_basics2.zip

Control StructureControl Structure

32

Control Structure: Assignment
puts "----Every assignment returns the assigned value"
puts a = 4 #=> 4

puts "----Assignments can be chained"
puts a = b = 4 #=> 4
puts a+b #=> 8

puts "----Shortcuts"
puts a += 2 #=> 6
puts a = a + 2 #=> 8

puts "----Parallel assignment"
a, b = b, a
puts a #=> 4
puts b #=> 8

puts "----Array splitting"
array = [1,2]
a, b = *array
puts a #=> 1
puts b #=> 2

33

Control Structure: Conditionals
puts "----if/else condition"
if (1 + 1 == 2)
 puts "One plus one is two"
else
 puts "Not a chance!"
end

puts "----if and unless conditions"
puts "Life is good!" if (1 + 1 == 2)
puts "Surprising" unless (1 + 1 == 2)

puts "----? condition"
puts (1 + 1 == 2)?'True':'Not True'

34

Control Structure: Conditionals
puts "----case/when/then condition"
spam_probability = rand(100)
puts "spam_probability = " + spam_probability.to_s

case spam_probability
when 0...10 then puts "Lowest probability"
when 10...50 then puts "Low probability"
when 50...90 then puts "High Probability"
when 90...100 then puts "Highest probability"
end

35

Control Structure: Loop
puts "---- while loop"
while (i < 10)
 i *= 2
end
puts i #=> 16

puts "---- while loop 2"
i *= 2 while (i < 100)
puts i #=> 128

puts "---- while loop with begin/end"
begin
 i *= 2
end while (i < 100)
puts i #=> 256

36

Control Structure: Loop
puts "---- until"
i *= 2 until (i >= 1000)
puts i #=> 1024

puts "---- loop"
loop do
 break i if (i >= 4000)
 i *= 2
end
puts i #=> 4096

puts "---- times"
4.times do
 i *= 2
end
puts i #=> 65536

37

Control Structure: Loop
puts "---- array"
r =[]
for i in 0..7
 next if i % 2 == 0
 r << i
end
puts r

puts "----Many things are easier with blocks"
puts (0..7).select { |i| i % 2 != 0}

38

Lab:Lab:

Exercise 5: Control StructuresExercise 5: Control Structures
5509_ruby_basics2.zip5509_ruby_basics2.zip

Exception HandlingException Handling

40

Exception Class

• Exceptions are implemented as classes (objects), all of
whom are descendents of the Exception class

• List of Exceptions
> ArgumentError, IndexError, Interrupt
> LoadError, NameError, NoMemoryError
> NoMethodError, NotImplementedError
> RangeError, RuntimeError
> ScriptError, SecurityError, SignalException
> StandardError, SyntaxError
> SystemCallError, SystemExit, TypeError

41

Exception Handling
begin
 # attempt code here
rescue SyntaxError => mySyntaxError # Similar to 'catch' in Java
 print "Unknown syntax error. ", mySyntaxError, "\n"
 # error handling specific to problem here
rescue StandardError => myStandardError
 print "Unknown general error. ", myStandardError, "\n"
 # error handling specific to problem here
else
 # code that runs ONLY if no error goes here
ensure # Simiar to 'finally' in Java
 # code that cleans up after a problem and its error handling goes here
end

42

Lab:Lab:

Exercise 6: Exception HandlingExercise 6: Exception Handling
5509_ruby_basics2.zip5509_ruby_basics2.zip

Ruby OperatorsRuby Operators

44

Ruby Operators

• Most Ruby operators are actually method calls
> For example, a + b is interpreted as a.+(b), where the +

method in the object referred to by variable a is called with b
as its argument.

• Ruby arithmetic operators
> +, -, *, /< %, **

• Ruby comparison operators
> ==, !=, >, <, >=, <=, <=>, ===

• Ruby assignment operators
> =, +=, -=, *=, /=, %=, **=

45

Ruby Operators

• Bitwise operators
> &, |, ^, ~, <<, >>

• Logical operators
> And, or, &&, ||, !, not

• Ternary operators
> ?:

• Range operators
> .. (inclusive), … (

46

Ruby Operators

• a || b
> This expression evaluates a first. If it is not false or nil, then

evaluation stops and the expression returns a. Otherwise, it
returns b.

> Common practice of returning a default value b if the first
value has not been set

• a ||= b
> Same as a = a || b

47

Lab:Lab:

Exercise 7: Ruby OperatorsExercise 7: Ruby Operators
5509_ruby_basics2.zip5509_ruby_basics2.zip

Regular ExpressionRegular Expression

49

Regular Expression

• Lets you specify a pattern for match

• Use /pattern/ or %r{pattern}

• Simple pattern examples
/ruby|rails/ # match either ruby or rails
/r(uby|ails)/ # same as above
/ab+c/ # match a string containing an a followed one
 # or more b followed by c
/ab*c/ # same as above except zero or more b

50

“=~” matching operator

• "=~" is a matching operator with respect to regular
expressions; it returns the position in a string where a
match was found, or nil if the pattern did not match.
if subject =~ /r(uby|ails)/

puts “subject matches the pattern”
end

51

Basic Patterns

• . (dot) - matches any single character
> a.c matches "abc"
> .at matches any three-character string ending with "at",

including "hat", "cat", and "bat"
• [] - Matches a single character that is contained within the

brackets
> [abc] matches "a", "b", or "c"
> [a-z] specifies a range which matches any lowercase letter

from "a" to "z".
> [abcx-z] matches "a", "b", "c", "x", "y", and "z", as does [a-cx-

z].
> [hc]at matches "hat" and "cat"

52

Basic Patterns

• [^] - Matches a single character that is not contained within the
brackets
> [^abc] matches any character other than "a", "b", or "c".
> [^a-z] matches any single character that is not a lowercase letter

from "a" to "z".
> [^b]at matches all strings matched by .at except "bat".

• ^ - Matches the starting position within the string.
> ^[hc]at matches "hat" and "cat", but only at the beginning of the

string or line.

• $ - Matches the ending position of the string or the position just
before a string-ending newline
> [hc]at$ matches "hat" and "cat", but only at the end of the string or

line.

53

Character Abbreviation

/fo\w+.*bar/ # “foobar”, “fogTS!bar, ...
%r[fo\w+.*bar] # Same as above

Abbreviation As [...] Matches Opposite
\d [0-9] Digit character \D
\s Whitespace character \S
\w [A-Za-z0-9_] Word character \W
. Any character

Sequence Matches
*
+
?

zero or more occurrences of preceding character
one or more occurrences of preceding character
zero or one occurences of preceding character

54

Code with Passion!Code with Passion!
JPassion.comJPassion.com

54

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

