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Topics
• Methods Basics

• Methods Advanced
> Arguments, Visibility, Method with a ! (bang)

• Modules

• Control structures

• Exception handling

• Ruby operators

• Regular expression
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Method Definitions

• Methods are defined using the keyword def followed by the 
method name and a set of arguments
 
 def my_method1 (argument1, argument2)
   puts (argument1, argument2) 
 end

  # Parentheses (..) are optional both in method definition
  # as well as in method invocation
 def my_method2 argument1, argument2    # method definition
   puts argument1, argument2                      # method invocation
 end
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Class Method vs. Instance Method
• A class can contain both class and instance methods

• Class method is defined with self.<method_name>
class MyClass
   def self.find_everybody # class method

User.find(:all)
   end
   def my_instance_method  # instance method
   end
end

• Class method is invoked with a class
 MyClass.find_everybody
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How to Invoke Methods

• Methods are called using the following syntax:
method_name (argument1, argument2,…)

• The parentheses can be omitted
method_name argument1, argument2  # with arguments
method_name                                       # with no arguments

• If you use method result immediately for calling another method, 
however, then you have to use parentheses:
# A method returns an array and we want to reverse
# element order of the returned array using “reverse”
# method of Array class.
results = method_name (argument1, argument2).reverse
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Return Value of a Method

• A method returns the value of the last expression evaluated 
– return statement is optional
 
 # return value of x+y expression
 def add_method (x,y)
   puts “something”
   x + y     # return statement is optional
 end
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Explicit “return” statement
• An explicit “return” statement can also be used to return 

from function with a value, prior to the end of the function 
declaration 
 def add_method(x,y)
   return x + y 
   puts “this is not evaluated”    
 end

• This is useful when you want to terminate a loop or return 
from a function as the result of a conditional expression
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Lab:Lab:

Exercise 0: Ruby Method BasicsExercise 0: Ruby Method Basics
5509_ruby_basics2.zip 5509_ruby_basics2.zip 
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Default Value Argument

• A default argument value can be specified in method 
definition 
 def some_method(value='default', arr=[ ])
   puts value
   puts arr.length
 end
 some_method('something')        # arr is not passed

• The method call above will output:
something 
 0                     (default argument value [].length)
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Variable Length Argument List

• The last argument of a method may be preceded by an 
asterisk(*), which is sometimes called the 'splat' operator - this 
indicates that more arguments may be passed to the function. 
Those arguments are collected up and an array is created.
 
def calculate_value(x,y,*otherValues)
   puts otherValues # otherValues is an array
 end
 
 calculate_value(1,2,'a','b','c')  # ['a', 'b', 'c']
 calculate_value(1,2,'a','b','c', 'd')  # ['a', 'b', 'c', 'd']
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Array Argument as “*array”

• The asterisk (*) operator may also precede an Array 
argument in a method call. In this case the Array will be 
expanded and the values passed in as if they were 
separated by commas.
 arr = ['a','b','c']
 calculate_value(*arr)

• has the same result as:
calculate_value('a','b','c')
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Passing a Hash as an Argument

• Another technique that Ruby allows is to pass a Hash 
argument when invoking a function, and that gives you best 
of all worlds - named arguments, and variable argument 
length

• Very common in Ruby/Rails programming
 def accepts_hash( var )
     print "got: ", var.inspect     # will print out what it received
 end
 
 # Pass a hash as an argument
 accepts_hash( {:arg1 => 'giving arg1', :argN => 'giving argN'} )
 # => got: {:argN=>"giving argN", :arg1=>"giving arg1"}
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Parentheses ( ) for the Arguments,
Braces { } for a Hash Argument
• Parentheses can be omitted for the arguments 

• If the last argument is a Hash, braces { }  of the Hash can be 
omitted as well. The following three work the same.

# Arguments are enclosed with ( ), hash is enclosed with braces { } 
accepts_hash( { :arg1 => 'giving arg1', :argN => 'giving argN' } ) 

# Argument are enclosed with (), but no { } for a hash argument
accepts_hash( :arg1 => 'giving arg1', :argN => 'giving argN' ) 

# No () for arguments, no { } for a hash - very common
accepts_hash :arg1 => 'giving arg1', :argN => 'giving argN' 
accepts_hash arg1: 'giving arg1', argN: 'giving argN'   (from Ruby 1.9)
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Calling a Method with a Code Block

• Note: We have not learned Code block yet.. so if you don't 
understand things on this page, that is fine...

• If you are going to pass a code block to function, however, 
you need parentheses for arguments – we will learn about 
code block later on 

# You need parentheses for arguments since there is a block
accepts_hash( :arg1 => 'giving arg1', :argN => 'giving argN' )  { |s| puts s }
accepts_hash( { :arg1 => 'giving arg1', :argN => 'giving argN' } )  { |s| puts s } 

# Compile error since there is no ( ) with code block
accepts_hash :arg1 => 'giving arg1', :argN => 'giving argN'   { |s| puts s }

code block
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Method with ! (Bang)

• In Ruby, methods that end with an exclamation mark (also 
called a "bang") modify the object

• Methods that do not end in an exclamation point return 
data, but do not modify the object.
>> x="jpassion"
=> "jpassion"

>> x.upcase
=> "JPASSION"
>> x
=> "jpassion"

>> x.upcase!
=> "JPASSION"
>> x
=> "JPASSION"
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Declaring Visibility

• By default, all methods in Ruby classes are public - 
accessible by anyone 

• If desired, this access can be restricted by private, 
protected object methods 
> It is interesting that these are not actually keywords, but 

actual methods that operate on the class, dynamically 
altering the visibility of the methods



21

private 
• The private methods methods can be called only from within the 

calling object
> You cannot access another instance's private methods directly.
> If private is invoked without arguments, it sets access to private 

for all subsequent methods.
• The protected methods can be called by any instance of the defining 

class or its subclasses.

 class Example
   def methodA
   end
   private # all methods that follow will be made private: 
               # not accessible by outside object
   def methodP
   end
 end
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Declaring Visibility: private

• private method can be invoked with named arguments - 
altering the visibility of methodP to private in the example 
below
 
class Example
   def methodA
   end
   
   def methodP
   end
   
   private :methodP   # change the visibility of methodP to private
 end
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Lab:Lab:

Exercise 1: Method AdvancedExercise 1: Method Advanced
5509_ruby_basics2.zip5509_ruby_basics2.zip



  
ModulesModules



25

What is a Module?
• Modules are way of grouping together some functions and 

variables and classes, thus providing namespaces
> Similar to Java packages, which provides namespaces 

for Java classes
• A class “C” in a Module “M” is referenced as M::C

• Methods can be present in a Module 

• A Module cannot be instantiated – object cannot be created 
 from a module
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Module Provides Namespace
      puts "----Define People module with Stalk class"

module People
  class Stalk 
    def about
      "I am a person."
    end
  end
end

puts "----Define Plants module with Stalk class"
module Plants
  class Stalk
    def about
      "I am a plant."
    end
  end
end

puts "----Create an instance of Stalk class of People Module"
a = People::Stalk.new

puts "----Create an instance of Stalk class of Plants Module"
b = Plants::Stalk.new
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Mix-in with a module
• A module can contain just methods (instead of classes)

• You can “include” a module into a class - it is called Mix-in
module Aeronautics
  def launch()             # A module can have a method
    "3, 2, 1 Blastoff!"
  end 
end

class RocketShip
  include Aeronautics  # Include a module
end

r = RocketShip.new
puts r.launch               # You can invoke a method
                                    # of an included module  
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Mix-in with multiple modules
• You can mix in as many modules as you like 

module Aeronautics
  def launch()
    "3, 2, 1 Blastoff!"
  end
end

module Calculator
  def add(x, y)
    x + y
  end
end

class RocketShip
  include Aeronautics
  include Calculator
end

r = RocketShip.new
puts r.launch      # 3, 2, 1 Blastoff!
puts r.add(3, 4)  # 7 
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Requiring a Module

• If your module is in another file, you must first require that 
module before you can use it in include statement

require './RubyModule_define'

puts "----Create MyNumber class which includes Stringify module"
class MyNumber 
  include Stringify # "Stringify" module is defined in "RubyModule_define.rb"
  def initialize(value)
    @value = value
  end
end

puts "----Create MyNumber object and call stringify method from the Stringify module"
my_number = MyNumber.new(2)
puts my_number.stringify  # Should print Two
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Lab:Lab:

Exercise 3: ModulesExercise 3: Modules
5509_ruby_basics2.zip5509_ruby_basics2.zip
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Control Structure: Assignment
puts "----Every assignment returns the assigned value"
puts a = 4       #=> 4

puts "----Assignments can be chained"
puts a = b = 4   #=> 4
puts a+b         #=> 8

puts "----Shortcuts"
puts a += 2      #=> 6
puts a = a + 2   #=> 8

puts "----Parallel assignment"
a, b = b, a
puts a           #=> 4
puts b           #=> 8

puts "----Array splitting"
array = [1,2]
a, b = *array
puts a           #=> 1
puts b           #=> 2
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Control Structure: Conditionals
puts "----if/else condition"
if (1 + 1 == 2)
  puts "One plus one is two"
else
  puts "Not a chance!"
end

puts "----if and unless conditions"
puts "Life is good!" if (1 + 1 == 2)
puts "Surprising" unless (1 + 1 == 2)

puts "----? condition"
puts (1 + 1 == 2)?'True':'Not True'
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Control Structure: Conditionals
puts "----case/when/then condition"
spam_probability = rand(100)
puts "spam_probability = " + spam_probability.to_s

case spam_probability
when 0...10 then puts "Lowest probability"
when 10...50 then puts "Low probability"
when 50...90 then puts "High Probability"
when 90...100 then puts "Highest probability"
end
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Control Structure: Loop
puts "---- while loop"
while (i < 10)
  i *= 2
end
puts i          #=> 16

puts "---- while loop 2"
i *= 2 while (i < 100)
puts i         #=> 128

puts "---- while loop with begin/end"
begin
  i *= 2
end while (i < 100)
puts i         #=> 256
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Control Structure: Loop
puts "---- until"
i *= 2 until ( i >= 1000)
puts i         #=> 1024

puts "---- loop"
loop do
  break i if (i >= 4000)
  i *= 2
end
puts i         #=> 4096

puts "---- times"
4.times do
   i *= 2
end
puts i         #=> 65536
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Control Structure: Loop
puts "---- array"
r =[]
for i in 0..7
  next if i % 2 == 0
  r << i
end
puts r

puts "----Many things are easier with blocks"
puts (0..7).select { |i| i % 2 != 0} 
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Lab:Lab:

Exercise 5: Control StructuresExercise 5: Control Structures
5509_ruby_basics2.zip5509_ruby_basics2.zip



  
Exception HandlingException Handling



40

Exception Class

• Exceptions are implemented as classes (objects), all of 
whom are descendents of the Exception class 

• List of Exceptions
> ArgumentError, IndexError, Interrupt
> LoadError, NameError, NoMemoryError
> NoMethodError, NotImplementedError
> RangeError, RuntimeError
> ScriptError, SecurityError, SignalException
> StandardError, SyntaxError
> SystemCallError, SystemExit, TypeError
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Exception Handling
begin
    # attempt code here
rescue SyntaxError => mySyntaxError  # Similar to 'catch' in Java
    print "Unknown syntax error. ", mySyntaxError, "\n"
    # error handling specific to problem here
rescue StandardError => myStandardError
    print "Unknown general error. ", myStandardError, "\n"
    # error handling specific to problem here
else
    # code that runs ONLY if no error goes here
ensure                                                     # Simiar to 'finally' in Java
    # code that cleans up after a problem and its error handling goes here
end
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Lab:Lab:

Exercise 6: Exception HandlingExercise 6: Exception Handling
5509_ruby_basics2.zip5509_ruby_basics2.zip
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Ruby Operators

• Most Ruby operators are actually method calls
> For example, a + b is interpreted as a.+(b), where the + 

method in the object referred to by variable a is called with b 
as its argument.

• Ruby arithmetic operators
> +, -, *, /< %, **

• Ruby comparison operators
> ==, !=, >, <, >=, <=, <=>, ===

• Ruby assignment operators
> =, +=, -=, *=, /=, %=, **= 
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Ruby Operators

• Bitwise operators
> &, |, ^, ~, <<, >>

• Logical operators
> And, or, &&, ||, !, not

• Ternary operators
> ?: 

• Range operators
> .. (inclusive), … (
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Ruby Operators

• a || b
> This expression evaluates a first.  If it is not false or nil, then 

evaluation stops and the expression returns a. Otherwise, it 
returns b.

> Common practice of returning a default value b if the first 
value has not been set

• a ||= b
> Same as a = a || b
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Lab:Lab:

Exercise 7: Ruby OperatorsExercise 7: Ruby Operators
5509_ruby_basics2.zip5509_ruby_basics2.zip
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Regular Expression

• Lets you specify a pattern for match

• Use /pattern/ or %r{pattern}

• Simple pattern examples
/ruby|rails/ # match either ruby or rails
/r(uby|ails)/ # same as above
/ab+c/ # match a string containing an a followed one 
                         # or more b followed by c
/ab*c/ # same as above except zero or more b
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“=~” matching operator

• "=~" is a matching operator with respect to regular 
expressions; it returns the position in a string where a 
match was found, or nil if the pattern did not match. 
if subject =~ /r(uby|ails)/

puts “subject matches the pattern”
end
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Basic Patterns

• . (dot) - matches any single character
> a.c matches "abc"
> .at matches any three-character string ending with "at", 

including "hat", "cat", and "bat"
• [ ] - Matches a single character that is contained within the 

brackets
> [abc] matches "a", "b", or "c"
> [a-z] specifies a range which matches any lowercase letter 

from "a" to "z".
> [abcx-z] matches "a", "b", "c", "x", "y", and "z", as does [a-cx-

z]. 
> [hc]at matches "hat" and "cat"
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Basic Patterns

• [^ ] - Matches a single character that is not contained within the 
brackets
> [^abc] matches any character other than "a", "b", or "c". 
> [^a-z] matches any single character that is not a lowercase letter 

from "a" to "z".
> [^b]at matches all strings matched by .at except "bat".

• ^ - Matches the starting position within the string.
> ^[hc]at matches "hat" and "cat", but only at the beginning of the 

string or line.

• $ - Matches the ending position of the string or the position just 
before a string-ending newline
> [hc]at$ matches "hat" and "cat", but only at the end of the string or 

line.
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Character Abbreviation

/fo\w+.*bar/   # “foobar”, “fogTS!bar, ...
%r[fo\w+.*bar] # Same as above

Abbreviation As [...] Matches Opposite
\d [0-9] Digit character \D
\s Whitespace character \S
\w [A-Za-z0-9_] Word character \W
. Any character

Sequence Matches
*
+
?

zero or more occurrences of preceding character
one or more occurrences of preceding character
zero or one occurences of preceding character
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Code with Passion!Code with Passion!
JPassion.comJPassion.com
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