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Topics

• Blocks
> What is a block?
> How does a block look like?
> How does a block get passed and executed?

• Proc

• & (Ampersand)

• Lambda

• Closure
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What is a Block What is a Block 
(Code Block)?(Code Block)?
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What is a block (code block)?

• Block is basically a chunk of code 
> You can think of it as a nameless function as well

• You can pass a block to “another function” as an argument (I will 
call that “another function” a “target function” or “target method” 
in this presentation), and then that target function can execute 
the passed-in code block
> For example, a target function could perform iteration by passing 

one item at a time to the block                                      

# each is a method of Array class
[1, 2, 3].each { |n| puts "Number #{n}" }

BlockTarget method
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How Does a BlockHow Does a Block
Look Like?Look Like?
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How to Represent (Create) a Block?

• A block can be represented (created) in two different formats - 
these two formats are functionally equivalent

• Convention
> Use {  } for a single line block 
> Use do ... end for multi-line block

puts "----First format of code block containing code fragment between { and }"
[1, 2, 3].each { puts "Life is good!" }

puts "----Second format of code block containing code fragment between do and 
end"

[1, 2, 3].each do 
   puts "Life is good!"
end
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How Does a Block GetHow Does a Block Get
Passed and Executed?Passed and Executed?
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How a block is passed & executed

• When a method is invoked, a block can be “passed” (sometimes 
called “attached”) – think of it as a special argument to the 
method

• The yield() method in the invoked method (target method) 
executes the passed-in block
puts "----Define MyClass which invokes yield"
class MyClass
  def command()
    # yield will execute the passed-in block 
    yield    # same as yield ()
  end        
end

puts "----Create object instance of MyClass"
m = MyClass.new
puts "----Call command method of the MyClass passing a block"
m.command {puts "Hello World!"}



9

How a block receive arguments

• A block, as a nameless function, itself can receive arguments - 
they are represented as comma-separated list at the beginning of 
the block, enclosed in pipe ( | ) characters:

puts "----Define MyClass which invokes yield"
class MyClass
  def command1()
    # yield will execute the supplied block
    yield(Time.now)  # pass an argument to a block
  end        
end

puts "----Create an object instance of MyClass"
m = MyClass.new

puts "----Call command1 method of the MyClass"
m.command1() {|x| puts "Current time is #{x}"}
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Example: Block Receive Argument

• each method of Array class passes each element as an 
argument to a block 

[1, 2, 3].each { |n| puts "Number #{n}" }

[1, 2, 3].each do |n|
  puts "Number #{n}"
end
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How a block can receive arguments

• A block can receive multiple arguments 

puts "----Define a method called testyield"
def testyield
  yield(1000, "Sang Shin")                 # pass two arguments to a block
  yield("Current time is", Time.now)  # pass two arguments to a block
end

puts "----Call testyield method"
testyield { |arg1, arg2| puts "#{arg1} #{arg2}" }

• Result
----Define a method called testyield
----Call testyield method
1000 Sang Shin
Current time is Mon Jun 30 09:14:56 -0400 2008
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Lab:Lab:

Exercise 1: Ruby Blocks Exercise 1: Ruby Blocks 
5512_ruby_blocks.zip5512_ruby_blocks.zip



13

Proc ObjectsProc Objects
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What is a Proc object?

• Proc objects (called as Proc's) are blocks of code that have 
been converted into objects
> These objects are “callable” (“executable”)

• Proc objects are considered as first-class objects in Ruby 
language (just like String object) because they can be 
> Created during run-time
> Assigned to a variable
> Passed as an argument to functions
> Returned as the return value of functions

• Besides, the block of code captured in the Proc object can be 
called
> Via “call” method
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How To Create and Execute a Proc Object?

• Use new keyword of Proc class passing a block to create a Proc 
object and use call method of the Proc object to execute it

puts "----Create a Proc object and call it"
say_hi = Proc.new { puts "Hello Sydney" }   # Create a Proc object
say_hi.call                                                    # Call Proc object

puts "----Create another Proc object and call it"
Proc.new { puts "Hello Boston"}.call

• Result
----Create a Proc object and call it
Hello Sydney
----Create another Proc object and call it
Hello Boston
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How to pass a Proc object as an 
argument?
• Pass it just like any other Ruby object (like a String object) - hence 

the reason why Proc object is a first-class object in Ruby

puts "----Create a Proc object from a block"
my_proc = Proc.new {|x| puts x}

puts "----Define a method that receives an argument"
def foo (proc_param, b)
  proc_param.call(b)
end
 
puts "----Call a method that passes a Proc object as an argument"
foo(my_proc, 'Sang Shin')
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How to pass Arguments to the block
(represented by the Proc object)?
• Pass arguments in a call method of the proc object

• Note: This is the same code in the previous slide, but emphasizing 
a different point
puts "----Create a Proc object from a block"
my_proc = Proc.new {|x| puts x}

puts "----Define a method that receives an argument"
def foo (proc_param, b)
  proc_param.call(b)   
end
 
puts "----Call a method that passes a Proc object as an argument"
foo(my_proc, 'Sang Shin')
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How to Use a Proc object as a Return 
Value?
• Just like any other Ruby object 

puts "----Define a method that returns Proc object as a return value"
def gen_times(factor)     
    Proc.new {|n| n*factor }   # return a Proc object   
end

puts "----Assign Proc object to local variables"
times3 = gen_times(3)   

puts "----Execute the code block passing an argument"
puts times3.call(3)           
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Proc Object worksProc Object works
as a Closureas a Closure
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Proc Object works as a Closure

• Proc objects (Procs) are blocks of code that have been bound to 
a set of local variables.  Once bound, the code may be called in 
different contexts and still access those variables.
 
def gen_times(factor)
    mynum = factor *2;
    Proc.new {|n| n*factor + mynum}
end

 times3 = gen_times(3)               # factor set to 3 and mynum set to 6
 times5 = gen_times(5)               # factor set to 5 and mynum set to 10

 times3.call(12)                           #=> 42 because 12(n) * 3(factor) + 6(mynum)
 times5.call(4)                             #=> 30 because 4(n) * 5(factor)  + 10(mynum)
 times3.call(times5.call(4))         #=> 96 because 30(n) * 3(factor) + 6(mynum)



21

lambdalambda
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lambda and proc

• lambda is equivalent to Proc.new - the following statements are 
considered equivalent 

say_hi = Proc.new { |x| puts "Hello #{x}" }
say_hi = proc {  |x|puts "Hello #{x}" }

say_hi = lambda {  |x| puts "Hello #{x}" }
say_hi = ->(x) {puts "Hello #{x}" }   # New syntax from Ruby 1.9
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Lab:Lab:

Exercise 2: Proc & Lambda Exercise 2: Proc & Lambda 
5512_ruby_blocks.zip5512_ruby_blocks.zip
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& (Ampersand)& (Ampersand)
OperatorOperator
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How & (Ampersand) is used?

• The ampersand operator (&) can be used to explicitly convert 
between blocks and Procs

• Conversion from a block to a Proc
> If an ampersand (&) is prepended to the last argument in the 

argument list of a method, the block attached to this method is 
converted to a Proc object and gets assigned to that last 
argument.

• Conversion from a Proc to a block
> Another use of the ampersand is the other-way conversion - 

converting a Proc into a block. This is very useful because many 
of Ruby’s great built-ins, and especially the iterators, expect to 
receive a block as an argument, and sometimes it’s much more 
convenient to pass them a Proc.
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Conversion from a Block to a Proc 

• The method receives a block as a Proc object 
puts "----The block is passed as the last argument in the form of Proc 

object"
def my_method_ampersand(a, &f)
  # the block can be accessed through f
  f.call(a)
    
  # but yield also works !
  yield(a)
end
 
puts "----Call a method with a block"
my_method_ampersand("Korea") {|x| puts x}
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Conversion from a Proc to a Block 

• Pass a Proc with & preceded 
puts "----Create a Proc object"
say_hi = Proc.new { |x| puts "#{x} Hello Korea" }

puts "----Define a method which expects a block NOT Proc object"
def do_it_with_block
  if block_given?
    yield(1)
  end
end

puts "----Call do_it_with_block method which expects a block, convert Proc object 
to a block"

do_it_with_block(&say_hi)
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Lab:Lab:

Exercise 3: & Operator Exercise 3: & Operator 
5512_ruby_blocks.zip5512_ruby_blocks.zip
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Where Do Blocks Where Do Blocks 
Get Used?Get Used?
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Blocks Usage Examples

• Iteration
[1, 2, 3].each {|item| puts item}

• Resource management
file_contents = open(file_name) { |f| f.read }

• Callbacks
widget.on_button_press do

puts “Button is pressed”
end
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Lab:Lab:
Exercise 4: Ruby Blocks & Iterators Exercise 4: Ruby Blocks & Iterators 

5512_ruby_blocks.zip5512_ruby_blocks.zip
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What is Ruby What is Ruby 
Closure?Closure?
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What is a Ruby Closure?

• In Ruby, a Proc object behaves as a Closure
> A Proc object maintains all the context in which the block was 

defined: the value of self, and the methods, variables, and 
constants in scope. This context is called scope information

> A block of the Proc object can still use all original scope 
information such as the variables even if the environment in which 
it was defined would otherwise have disappeared.  
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Ruby Closure Example 
# Define a method that returns a Proc object
def ntimes(a_thing)
  return proc { |n| a_thing * n }
end

# When “ntimes(23)” gets called, Proc object created
# The a_thing is set to value 23 in a block.  
p1 = ntimes(23)

# Note that ntimes() method has returned.  The block still
# has access to a_thing variable.

# Now execute the block.  Note that the a_thing is still set to
# 23 and the code in the block can access it, so the results is set 69 and 92
puts p1.call(3) # 69
puts p1.call(4) # 92
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Lab:Lab:
Exercise 5: Ruby Closure Exercise 5: Ruby Closure 

5512_ruby_blocks.zip5512_ruby_blocks.zip
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    Code with Passion!Code with Passion!
JPassion.comJPassion.com
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