
1

Ruby Blocks &Ruby Blocks &
ClosuresClosures

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• Blocks
> What is a block?
> How does a block look like?
> How does a block get passed and executed?

• Proc

• & (Ampersand)

• Lambda

• Closure

3

What is a Block What is a Block
(Code Block)?(Code Block)?

4

What is a block (code block)?

• Block is basically a chunk of code
> You can think of it as a nameless function as well

• You can pass a block to “another function” as an argument (I will
call that “another function” a “target function” or “target method”
in this presentation), and then that target function can execute
the passed-in code block
> For example, a target function could perform iteration by passing

one item at a time to the block

each is a method of Array class
[1, 2, 3].each { |n| puts "Number #{n}" }

BlockTarget method

5

How Does a BlockHow Does a Block
Look Like?Look Like?

6

How to Represent (Create) a Block?

• A block can be represented (created) in two different formats -
these two formats are functionally equivalent

• Convention
> Use { } for a single line block
> Use do ... end for multi-line block

puts "----First format of code block containing code fragment between { and }"
[1, 2, 3].each { puts "Life is good!" }

puts "----Second format of code block containing code fragment between do and
end"

[1, 2, 3].each do
 puts "Life is good!"
end

7

How Does a Block GetHow Does a Block Get
Passed and Executed?Passed and Executed?

8

How a block is passed & executed

• When a method is invoked, a block can be “passed” (sometimes
called “attached”) – think of it as a special argument to the
method

• The yield() method in the invoked method (target method)
executes the passed-in block
puts "----Define MyClass which invokes yield"
class MyClass
 def command()
 # yield will execute the passed-in block
 yield # same as yield ()
 end
end

puts "----Create object instance of MyClass"
m = MyClass.new
puts "----Call command method of the MyClass passing a block"
m.command {puts "Hello World!"}

9

How a block receive arguments

• A block, as a nameless function, itself can receive arguments -
they are represented as comma-separated list at the beginning of
the block, enclosed in pipe (|) characters:

puts "----Define MyClass which invokes yield"
class MyClass
 def command1()
 # yield will execute the supplied block
 yield(Time.now) # pass an argument to a block
 end
end

puts "----Create an object instance of MyClass"
m = MyClass.new

puts "----Call command1 method of the MyClass"
m.command1() {|x| puts "Current time is #{x}"}

10

Example: Block Receive Argument

• each method of Array class passes each element as an
argument to a block

[1, 2, 3].each { |n| puts "Number #{n}" }

[1, 2, 3].each do |n|
 puts "Number #{n}"
end

11

How a block can receive arguments

• A block can receive multiple arguments

puts "----Define a method called testyield"
def testyield
 yield(1000, "Sang Shin") # pass two arguments to a block
 yield("Current time is", Time.now) # pass two arguments to a block
end

puts "----Call testyield method"
testyield { |arg1, arg2| puts "#{arg1} #{arg2}" }

• Result
----Define a method called testyield
----Call testyield method
1000 Sang Shin
Current time is Mon Jun 30 09:14:56 -0400 2008

12

Lab:Lab:

Exercise 1: Ruby Blocks Exercise 1: Ruby Blocks
5512_ruby_blocks.zip5512_ruby_blocks.zip

13

Proc ObjectsProc Objects

14

What is a Proc object?

• Proc objects (called as Proc's) are blocks of code that have
been converted into objects
> These objects are “callable” (“executable”)

• Proc objects are considered as first-class objects in Ruby
language (just like String object) because they can be
> Created during run-time
> Assigned to a variable
> Passed as an argument to functions
> Returned as the return value of functions

• Besides, the block of code captured in the Proc object can be
called
> Via “call” method

15

How To Create and Execute a Proc Object?

• Use new keyword of Proc class passing a block to create a Proc
object and use call method of the Proc object to execute it

puts "----Create a Proc object and call it"
say_hi = Proc.new { puts "Hello Sydney" } # Create a Proc object
say_hi.call # Call Proc object

puts "----Create another Proc object and call it"
Proc.new { puts "Hello Boston"}.call

• Result
----Create a Proc object and call it
Hello Sydney
----Create another Proc object and call it
Hello Boston

16

How to pass a Proc object as an
argument?
• Pass it just like any other Ruby object (like a String object) - hence

the reason why Proc object is a first-class object in Ruby

puts "----Create a Proc object from a block"
my_proc = Proc.new {|x| puts x}

puts "----Define a method that receives an argument"
def foo (proc_param, b)
 proc_param.call(b)
end

puts "----Call a method that passes a Proc object as an argument"
foo(my_proc, 'Sang Shin')

17

How to pass Arguments to the block
(represented by the Proc object)?
• Pass arguments in a call method of the proc object

• Note: This is the same code in the previous slide, but emphasizing
a different point
puts "----Create a Proc object from a block"
my_proc = Proc.new {|x| puts x}

puts "----Define a method that receives an argument"
def foo (proc_param, b)
 proc_param.call(b)
end

puts "----Call a method that passes a Proc object as an argument"
foo(my_proc, 'Sang Shin')

18

How to Use a Proc object as a Return
Value?
• Just like any other Ruby object

puts "----Define a method that returns Proc object as a return value"
def gen_times(factor)
 Proc.new {|n| n*factor } # return a Proc object
end

puts "----Assign Proc object to local variables"
times3 = gen_times(3)

puts "----Execute the code block passing an argument"
puts times3.call(3)

19

Proc Object worksProc Object works
as a Closureas a Closure

20

Proc Object works as a Closure

• Proc objects (Procs) are blocks of code that have been bound to
a set of local variables. Once bound, the code may be called in
different contexts and still access those variables.

def gen_times(factor)
 mynum = factor *2;
 Proc.new {|n| n*factor + mynum}
end

 times3 = gen_times(3) # factor set to 3 and mynum set to 6
 times5 = gen_times(5) # factor set to 5 and mynum set to 10

 times3.call(12) #=> 42 because 12(n) * 3(factor) + 6(mynum)
 times5.call(4) #=> 30 because 4(n) * 5(factor) + 10(mynum)
 times3.call(times5.call(4)) #=> 96 because 30(n) * 3(factor) + 6(mynum)

21

lambdalambda

22

lambda and proc

• lambda is equivalent to Proc.new - the following statements are
considered equivalent

say_hi = Proc.new { |x| puts "Hello #{x}" }
say_hi = proc { |x|puts "Hello #{x}" }

say_hi = lambda { |x| puts "Hello #{x}" }
say_hi = ->(x) {puts "Hello #{x}" } # New syntax from Ruby 1.9

23

Lab:Lab:

Exercise 2: Proc & Lambda Exercise 2: Proc & Lambda
5512_ruby_blocks.zip5512_ruby_blocks.zip

24

& (Ampersand)& (Ampersand)
OperatorOperator

25

How & (Ampersand) is used?

• The ampersand operator (&) can be used to explicitly convert
between blocks and Procs

• Conversion from a block to a Proc
> If an ampersand (&) is prepended to the last argument in the

argument list of a method, the block attached to this method is
converted to a Proc object and gets assigned to that last
argument.

• Conversion from a Proc to a block
> Another use of the ampersand is the other-way conversion -

converting a Proc into a block. This is very useful because many
of Ruby’s great built-ins, and especially the iterators, expect to
receive a block as an argument, and sometimes it’s much more
convenient to pass them a Proc.

26

Conversion from a Block to a Proc

• The method receives a block as a Proc object
puts "----The block is passed as the last argument in the form of Proc

object"
def my_method_ampersand(a, &f)
 # the block can be accessed through f
 f.call(a)

 # but yield also works !
 yield(a)
end

puts "----Call a method with a block"
my_method_ampersand("Korea") {|x| puts x}

27

Conversion from a Proc to a Block

• Pass a Proc with & preceded
puts "----Create a Proc object"
say_hi = Proc.new { |x| puts "#{x} Hello Korea" }

puts "----Define a method which expects a block NOT Proc object"
def do_it_with_block
 if block_given?
 yield(1)
 end
end

puts "----Call do_it_with_block method which expects a block, convert Proc object
to a block"

do_it_with_block(&say_hi)

28

Lab:Lab:

Exercise 3: & Operator Exercise 3: & Operator
5512_ruby_blocks.zip5512_ruby_blocks.zip

29

Where Do Blocks Where Do Blocks
Get Used?Get Used?

30

Blocks Usage Examples

• Iteration
[1, 2, 3].each {|item| puts item}

• Resource management
file_contents = open(file_name) { |f| f.read }

• Callbacks
widget.on_button_press do

puts “Button is pressed”
end

31

Lab:Lab:
Exercise 4: Ruby Blocks & Iterators Exercise 4: Ruby Blocks & Iterators

5512_ruby_blocks.zip5512_ruby_blocks.zip

32

What is Ruby What is Ruby
Closure?Closure?

33

What is a Ruby Closure?

• In Ruby, a Proc object behaves as a Closure
> A Proc object maintains all the context in which the block was

defined: the value of self, and the methods, variables, and
constants in scope. This context is called scope information

> A block of the Proc object can still use all original scope
information such as the variables even if the environment in which
it was defined would otherwise have disappeared.

34

Ruby Closure Example
Define a method that returns a Proc object
def ntimes(a_thing)
 return proc { |n| a_thing * n }
end

When “ntimes(23)” gets called, Proc object created
The a_thing is set to value 23 in a block.
p1 = ntimes(23)

Note that ntimes() method has returned. The block still
has access to a_thing variable.

Now execute the block. Note that the a_thing is still set to
23 and the code in the block can access it, so the results is set 69 and 92
puts p1.call(3) # 69
puts p1.call(4) # 92

35

Lab:Lab:
Exercise 5: Ruby Closure Exercise 5: Ruby Closure

5512_ruby_blocks.zip5512_ruby_blocks.zip

36

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

