
1

Rails Environment & Rails Environment &
ConfigurationConfiguration

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• Gem and RubyGem
• Gemfile and Gemfile.lock
• Bundler
• Environments
• Configuration
• Initializers
• Rake

Gem & RubyGemGem & RubyGem
(per system)(per system)

4

What is Gem and RubyGem?

• Gem is a standard package format for Ruby libraries
> In the same way “jar” and “war” are standard package formats for

Java libraries
• In Ruby/Rails world, a feature is built as a gem and there are

tons of 3rd-party gems you can use right away
> Security, testing, performance, ...

• You can create your own custom gems or extend existing gems
• RubyGem is package manager for the Ruby programming

language
> Manage the installation/uninstallation of gems (per your system)
> RubyGem comes with Ruby 1.9+
> You interact with RubyGem with “gem” command

5

What about Rails?

• Rails itself is a gem
> With dependencies on many other gems

• Special gems – gems that provide commands that can be
executed at the command line
> rails
> bundler
> rake

6

Gem Environment

• “gem env”

7

Gem Environment

• “gem env”

8

“gem” commands (1)

• “gem env”
> Display gem environment information

• “gem install <gem-name>”
> Installs <gem-name> gem
> In general, for a particular Rails app, you will want to use “bundle

install” with “Gemfile” to install all required gems in a single
command instead of installing each gem individually using “gem
install ..” command

• “gem uninstall <gem-name>”
> Uninstalls <gem-name> gem

9

“gem” commands (2)

• “gem list --local”
> List gems that are previously downloaded

• “gem list –remote”
> List available gems from “rubygems.org” website

• “gem search <gem-name> --remote”
> Search for <gem-name>

• “gem dependency”
> Show you all gems with their dependencies

• “gem dependency -R”
> Show you all gems with their dependencies
> Also shows gems with reverse dependencies (which gems have

dependency on the gems)

10

“rails” gem & its dependencies
• “gem dependency”

11

Where Gems are stored?

• <Ruby-Home>/lib/ruby/gems/<version>/gems
• <User-Home>/.gem/ruby/1.9.1

12

3rd Party Gems
• http://rubygems.org/
> Default Ruby gems host (4300 gems hosted Jan. 2014)

• https://www.ruby-toolbox.com/
> Show available gems based on categories
> Gems in the same category can be listed in the order of their

popularity

13

Lab:Lab:
Exercise 1: Gem & RubyGemExercise 1: Gem & RubyGem
5524_rails4_configuration.zip5524_rails4_configuration.zip

Gemfile & Gemfile.lockGemfile & Gemfile.lock
(per each Rails application)(per each Rails application)

15

What is “Gemfile”?

• Specifies all the gems (in other words, dependencies) required
for a Rails app

• When you create a new Rails app through “rails new
<appname>”, Rails creates a Gemfile for you

• You can then add, remove, update, and group gems by
modifying Gemfile
> For example, if you need a security gem, you add it to the Gemfile

• Every time a modification is made to the Gemfile, “bundle install”
or “bundle update” needs to be executed
> “bundle install” or “bundle update” will download and install a

newly added gem, for example
> At the end of “rails new <new-app>”, “bundle install” gets executed

by default

16

“Gemfile” Example

17

What is Gemfile.lock?

• When you run “bundle install”, Bundler will create Gemfile.lock if
it does not exist already
> Gemfile.lock specifies all gems used in the application along with

their versions
• Bundler uses this file in all subsequent 'bundle install”, which

guarantees that you always use the same exact version of
gems, even as your application moves across machines

• You SHOULD check your Gemfile.lock into version control
> If you do not, meaning if there is no Gemfile.lock, every machine

that checks out your repository (including your production server)
will resolve all dependencies again, which could result in different
versions of third-party code being used if any of the gems in the
Gemfile or any of their dependencies have been updated

18

Gemfile.lock Example

BundlerBundler

20

What is a Bundler?

• Handles dependency management in Rails 3 and Rails 4
applications
> Performs dependency resolution on the complete list of gems

specified in the Gemfile “all at once”
> Solves the “dependency conflict found too late” problem of Rails 2

(In Rails 2, dependency is resolved “one at a time”)

21

Bundler commands (used with app)

• “bundle install” (or just “bundle”)
> Install newly added gems specified in the “Gemfile”

• What it does
> If this is the first time you run “bundle install” (and a “Gemfile.lock”

does not exist), bundler will fetch all gems, resolve dependencies,
and install them locally, then creates “Gemfile.lock”

> If “Gemfile.lock” does exist, and you have not updated your
“Gemfile”, bundler use the gems specified in the “Gemfile.lock”

> If “Gemfile.lock” does exist, and you have updated your “Gemfile”,
bundler will use the dependencies in the “Gemfile.lock” for all
gems that you did not update, but will re-resolve the dependencies
of gems that you did update.

22

Bundler commands (used with app)

• “bundle show [gemname]”
> Displays where a bundled gem is installed

• “bundle update”
> Install newly added gems in the Gemfile (same as “bundle install”)
> If existing gems don't have version, it will upgrade to whatever

latest (difference from “bundle install”)
> If existing gems have version controlled with ~>, it will upgrade to

the latest at the final digit, the patch version (difference from
“bundle install”)
> 'my_gem', '~> 2.1.0' - “bundle update” will check if newer

version of 2.1.x is available

23

Bundler commands (used with app)

• “bundle package”
> Package up all gems in the “vendor/cache” directory inside app
> “bundle install” will use gems in the package instead of

“rubygems.org”
> Used to avoid external dependencies at deploy time

• “bundle outdated”
> Show all of the outdated gems in the current bundle

24

“bundle exec <rails command>”

• “bundle exec <rails command>” executes a command in the
context of your bundle
> Uses the gem versions specified in your “Gemfile” file (instead of

the latest gem version installed in the system)
> Most of the time, running “bundle exec <command>” has the same

results as if you just ran “<command>”, especially if you have the
same gems installed system wide as in your Gemfile file

> Using “bundle exec <command>” guarantees that the program is
run with the environment specified in the Gemfile, which hopefully
means it is the environment that the creators of the program want
it to be run in, which hopefully means it should run correctly no
matter what weird setup you have on your computer

• Example
> bundle exec rake --tasks

25

Lab:Lab:
Exercise 2: BundlerExercise 2: Bundler

5524_rails4_configuration.zip5524_rails4_configuration.zip

EnvironmentsEnvironments

27

Environments

• By default Rails ships with three environments:
> "development"
> "test"
> "production"

• You can create your own custom environment, for example,
“staging”
> Create a file called config/environments/staging.rb

• Start rails app with your custom environment
> rails server -e staging

• Start Rails console with your custom environment
> rails console staging

28

Development Environment

29

Lab:Lab:

Exercise 3: EnvironmentsExercise 3: Environments
5524_rails4_configuration.zip5524_rails4_configuration.zip

ConfigurationConfiguration

31

Location for Initialzation Code

• Rails offers four standard spots to place initialization code:
> config/application.rb
> Environment-specific configuration files
> Initializers
> After-initializers

32

config/application.rb

InitializersInitializers

34

Initializer Files

• After loading the framework and any gems in your application,
Rails turns to loading initializers

• An initializer is any Ruby file stored under config/initializers in
your application – you can add your own initializers here

35

Lab:Lab:
Exercise 4: InitializersExercise 4: Initializers

5524_rails4_configuration.zip5524_rails4_configuration.zip

RakeRake

37

What is “Rake”?

• Rake is Ruby Make, a standalone Ruby utility that replaces the
Unix utility 'make', and uses a 'Rakefile' and .rake files to build
up a list of tasks

• In Rails, Rake is used for common administration tasks,
especially sophisticated ones that build off of each other

38

Ready to use “Rake”tasks

39

Creating Custom Rake Tasks

• Custom rake tasks have a .rake extension and are placed in
./lib/tasks directory
namespace :greeting do
 desc "Some greeting"
 task :say_hello do
 puts "Hello, JPassion.com!"
 end
 task :say_goodbye do
 puts "Goodbye, JPassion.com!!"
 end
end

• Then you can invoke the task
rake greeting:say_hello
rake greeting:say_goodbye

40

Lab:Lab:

Exercise 5: RakeExercise 5: Rake
5553_rails4_configuration.zip5553_rails4_configuration.zip

41

Code with Passion!Code with Passion!
JPassion.comJPassion.com

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

