
AngularJS: Model, View, Controller

GuruTeam Instructor: Sang Shin

2

Topics

• Templates

• Expressions

• Directives

• Controllers

• Scopes

• ControllerAs

TemplatesTemplates

4

What is a Template?

• In Angular, templates are written with HTML that contains Angular-specific
elements and attributes

• Angular combines the template with
– Data from the model
– Controller to render the dynamic view that a user sees in the browser

5

Template (HTML page)Example

• A template (HTML page) with directives and expression bindings:
<!DOCTYPE html>
<html>
<body ng-app="myApp">

<div ng-controller="DoubleController">
Two times <input ng-model="num"> equals {{ double(num) }}
</div>
<my-own-component></my-own-component>
<my-own-directive></my-own-directive>

<script>
var myApp = angular.module('myApp', []);
myApp.controller('DoubleController', ['$scope', function ($scope) {
 $scope.double = function (value) {
 return value * 2;
 };
}]);
</script>
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.5.0/angular.min.js"></script>
</body>
</html>

directive

expression

model

ExpressionsExpressions

7

Expressions

• Angular expressions are JavaScript-like code snippets
– {{ expression }}

• Control flows (such as loops, if) are not allowed, however

• Examples
– {{ 2 + 5 }}
– {{ firstName + " " + lastName }}
– {{ user.name }} // from “user” JavaScript object
– {{ items[index]}} // from “items” array

8

Expressions & ng-bind

• Expressions works in the same way as the ng-bind directive - usage of
Expression is simpler to code

<div ng-init="name='Sang Shin';age=99">
<p>Using Expression: {{ 15 + 3 }}</p>
<p>Using ng-bind:
</p>

<p>{{ name + " is " + age + " years old." }}</p>
<p ng-bind="name + ' is ' + age + ' years old.'"></p>
</div>

9

Lab:Lab:

Exercise 1: ExpressionsExercise 1: Expressions
3302_angularjs_02_model_view_controller.zip3302_angularjs_02_model_view_controller.zip

DirectivesDirectives

11

What are Directives?

• Extends HTML attributes with the prefix ng- or data-ng-
– Attach special behavior or transform DOM element without having to

write JavaScript code

• AngularJS provided directives
– ng-app
– ng-controller
– ng-init
– ng-model
– ng-bind
– ng-if, ng-switch
– ng-show, ng-hide
– ng-repeat
– ng-click

12

ng-app (ngApp) directive

• Use this directive to auto-bootstrap an AngularJS application
– Without the usage of “ng-app”, a template will not be “compiled” - in other

words, it will not be recognized as an AngularJS template
– The ng-app directive designates the AngularJS root element and is

typically placed near the HTML root element of the page - e.g. on the
<body> or <html> tags

• Only one ng-app directive per HTML document is allowed

13

ng-model (ngModel) directive

• Binds the value of HTML input controls (<input>, <select>, <textarea>) to
application data (scope properties)
– <input type="text" ng-model="name">

• Supports HTML5 validation behavior (i.e. required, number, email, url,
minlength, maxlength)
– <input type="text" ng-model="name" required>

• Supports two-way databinding

14

ng-model (ngModel) directive example

• ngModel will try to bind to the property given by evaluating the expression on
the current scope
– If the property doesn't already exist on this scope, it will be created

implicitly and added to the scope

<div ng-app>
 Invoice:
 <div>
 Quantity: <input type="number" min="0" ng-model="qty">
 </div>
 <div>
 Costs: <input type="number" min="0" ng-model="cost">
 </div>
 <div>
 Total: {{qty * cost | currency}}
 </div>
</div>

“qty” property
is created in $rootScope

15

Data-binding between Model and View

If “qty” and “cost” properties do
not exist in the scope, they will
be automatically created in the

scope.

Two-day data binding: (1) If user change values in the view, the
changed values will set the scope properties (2) If values of the properties
are changed, the changed values get reflected in the view automatically

16

ng-repeat (ngRepeat) directive

• The ngRepeat directive instantiates a template once per item from a
collection

• Special properties are exposed on the local scope of each template instance,
including
– $index, $first, $middle, $last, $even, $odd

<div ng-init="students=['Tom','Sang','Yunna','Mary']">
 <p>Looping names with ng-repeat:</p>

 <li ng-repeat="student in students">
 {{$index}}: {{ student }}

</div>

17

ng-repeat two-way data binding

• When the contents of the collection change, ngRepeat makes the
corresponding changes to the DOM (view)
– When an item is added, a new instance of the template is added to the DOM
– When an item is removed, its template instance is removed from the DOM
– When items are reordered, their respective templates are reordered in the DOM

<div ng-init="students=['Tom','Sang','Yunna','Mary']">
 <p>Looping names with ng-repeat:</p>

 <li ng-repeat="student in students">
 {{$index}}: {{ student }}

</div>
Add a student

When it is clicked, the
view automatically reflects the

newly added student

18

Directive Syntax

• AngularJS HTML compiler supports multiple formats

• ng-model, ng-bind, ng-click ...
– Recommended format

• data-ng-model, data-ng-bind, data-ng-click …
– Recommended format when HTML5 validation is important

• ng_model, ng:model, x-ng-model
– Legacy, not recommended

19

Directive Name Normalization

• Directives are referenced by their case-sensitive camelCase normalized
name
– For example, ngModel (for ng-model), ngApp (for ng-app), ngBind (for ng-

bind), etc

• However, since HTML is case-insensitive, we refer to directives in the
DOM by lower-case forms, typically using dash-delimited attributes on
DOM elements
– For example, ng-model, ng-app, ng-bind, etc

• Angular normalizes an element's tag and attribute name to determine
which elements match which directives
– For example, “ng-model” or “data-ng-model” notation is normalized to

“ngModel” directive

20

Lab:Lab:

Exercise 2: DirectivesExercise 2: Directives
3302_angularjs_02_model_view_controller.zip3302_angularjs_02_model_view_controller.zip

ControllersControllers

22

What is a Controller?

• In Angular, a Controller is a JavaScript constructor function that is used to
augment the Angular Scope
– When a Controller is attached to the DOM via the ng-controller directive,

Angular will instantiate a new Controller object, using the specified
Controller's constructor function

– A new child scope will be available as an injectable parameter, represented
by $scope, to the Controller's constructor function

<div ng-controller="DoubleController">
Two times <input ng-model="num"> equals {{ double(num) }}
</div>

<script>
var myApp = angular.module('myApp', []);
myApp.controller('DoubleController', ['$scope', function ($scope) {
 $scope.double = function (value) {
 return value * 2;
 };
}]);

23

Create and use a controller

• In order to create a GreetingController, you have to have a reference to
Application module - Application module object needs to be created first
// Create an Angular module called “myApp”
var myApp = angular.module('myApp',[]);

// Add the controller's constructor function to the module using the .controller()
// method. This keeps the controller's constructor function out of the global scope.
myApp.controller('GreetingController', ['$scope', function($scope) {
 $scope.greeting = 'Hola!';
}]);

• We attach our controller to the DOM using the ng-controller directive - The
greeting property below can now be data-bound to the template:
<div ng-controller="GreetingController">
 {{ greeting }}
</div>

24

When to use (and not to use) Controller

• Use controllers to
– Set up the initial state of the $scope object.
– Add behavior to the $scope object.

• Do not use controller to
– Manipulate DOM — Controllers should contain only business logic. Putting

any presentation logic into Controllers significantly affects its testability.
Angular has databinding for most cases and directives to encapsulate
manual DOM manipulation.

– Format input — Use angular form controls
– Filter output — Use angular filters
– Share code or state across controllers — Use angular services
– Manage the life-cycle of other components (for example, to create service

instances)

25

Lab:Lab:

Exercise 3: ControllersExercise 3: Controllers
3302_angularjs_02_model_view_controller.zip3302_angularjs_02_model_view_controller.zip

ScopesScopes

27

Scope Object

• Typically, when you create a controller, you need to set up the initial state
for the Angular $scope
– You set up the initial state of a scope by attaching properties to the $scope

object
myApp.controller('GreetingController', ['$scope', function($scope) {
 $scope.greeting = 'Hola!';
 $scope.sayGreeting = function (){
 // some code
 }
}]);

• All the $scope properties will be available to the template at the point in the
DOM where the Controller is registered.
<div ng-controller="GreetingController">
 <div>{{greeting}}</div>
 <button ng-click=”sayGreeting()”>Click me</button>
</div>

28

View, Controller, and Scope

• $scope is an object that can be used to allow communication between
View and Controller - separation of roles.

// Controller
myApp.controller('GreetingController', ['$scope', function($scope) {
 $scope.greeting = 'Hello!';
 $scope.sayGreeting = function (){
 // some code
 }
}]);

// View (template)
<div ng-controller="GreetingController">
 <div>{{greeting}}</div>
 <button ng-click=”sayGreeting()”>Click me</button>
</div>

View
(Template)

Controller$scope

Separation of roles:
View does not know anything

about the Controller and Controller
does not anything about the view.

29

Scope as Data Model

• Scopes provide context against which expressions are evaluated
– For example {{username}} expression is meaningless, unless it is evaluated

against a specific scope which defines the username property

• Both controllers and views have reference to the scope, but not to each
other
– This makes the controllers view agnostic, which greatly improves the

testability of the application

30

Scope Hierarchies

• Each Angular application has exactly one root scope ($rootScope), but
may have several child scopes
– Each controller has its own scope, which is a child scope of the $rootScope

• The application can have multiple scopes
– When new scopes are created, they are added as children of their parent

scope
– This creates a tree structure which parallels the DOM where they're

attached.

31

Lab:Lab:

Exercise 4: ScopesExercise 4: Scopes
3302_angularjs_02_model_view_controller.zip3302_angularjs_02_model_view_controller.zip

ControllerAsControllerAs

33

ControllerAs

• Introduced from Angular 1.2+

• Reduces the developer confusion regarding the usage of $scope

• Recommended to be used moving forward instead of $scope – Angular 2
removed $scope

 myApp.controller('GreetingController', function() {

 this.greeting = 'Hola!';
 this.sayGreeting = function (){
 // some code
 }
});

<div ng-controller="GreetingController as ctrl">
 <div>{{ctrl.greeting}}</div>
 <button ng-click=”ctrl.sayGreeting()”>Click me</button>
</div>

34

Lab:Lab:

Exercise 5: ControllerAsExercise 5: ControllerAs
3302_angularjs_02_model_view_controller.zip3302_angularjs_02_model_view_controller.zip

• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and Web
Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to deliver
training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK and
Europe.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

