
1

Angular 2 DatabindingAngular 2 Databinding

1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

2

Topics

• What is databinding?
• Interpolation
• Property binding
• Local template references
• Event binding
• Two-way databinding
• @Input (custom property binding)
• Component lifecycle

What is Databinding?What is Databinding?

4

What is and Why Databinding?

• We want to generate and display dynamic contents

• Without a framework-level databinding, a developer
himself/herself would be responsible for
> Pushing data values into the HTML controls
> Handling user actions, which triggers value updates

• Angular databinding framework handles all these for you
> All you have to do is to use proper databinding markup's in the

template

5

Databinding between Component & Template

Pass data
to template

Listen to
events

6

4 Schemes of Databinding

• Each scheme has a direction — from the DOM to component, to
the DOM from component, or in both directions

• Three are one-way databinding and one is two-day databinding

InterpolationInterpolation

8

Interpolation

• {{ expression resolves to a string }}

• The expression is typically the name of a component property:
Angular replaces that name with the string value of the property

<h3>
 {{ title }}

</h3>

• The expression can invoke methods of the host component

{{ "This is a message from " + getSomeData() }}

“title” is a component property

component method

9

Lab: Interpolation

• Add two properties with types to the component and display
them using interpolation
> stringData: string
> numberData: number

• Add a method called getAllData() to the component and call it –
getAllData() method should return combined value of stringData
and numberData
> {{ "This is a message from " + getAllData() }}

• Optional lab
> Add “name” and “age” properties to the component
> Add getPersonalData() method to the component
> Access them using interpolation

Property BindingProperty Binding

11

Property Binding

• [property] = “expression resolving to a required value type”
> “3+5”
> “propertyOfComponent”
> “methodOfComponent()”

• Binding target can be a property of DOM element
<input [value] = “expression”>
<button [disabled]=”expression”>

12

Lab: Property binding

• Try the string interpolation first
> <input type=”text” value=”{{ stringData }}”>

• Try property binding (to the DOM properties)
> <input [value]=”stringData”>
> <input [value]=”numberData”>
> <button [disabled]="switch">Click me</button>
> (Use

"http://jpassion.com/images/duke.jpg")

Local Template Local Template
ReferencesReferences

14

Local template reference to DOM element

• You can provide local template references to a DOM element by
using #

• It is local to the template and is not available to the component
class
<p #myParagraph> test </p>

<p>{{myParagraph.textContent}}</p>

<input type=”text” #myInput>

<button (click)=”onClick(myInput.value)”>

Event BindingEvent Binding

16

Event Binding

• (click) = “expression handling the event”

• The (click) event binding typically calls a method in the
component
<button (click)="onClick()"></button>

<input type=”text #myinput>
<button (click)="onClick(myinput.value)"></button>

• Or inline expression can be used as well
<button (click)=”items.push(myinput.value)”></button>

17

Lab: Event binding

• Add a button with event binding, when clicked, call a method in
the component
> Just use console.log(“method is called”) inside the method to

verify that the method is called

• Use event handling to switch on and switch off another button's
disabled property

• Create an <input ..> element with local template reference
<input type=”text” #myinput>

• Add a button with event binding, when clicked, get a value of an
<input> element via local template reference and display it back
to the page
<button (click)=”onClick(myinput.value)”>Click me</button>

Two-way BindingTwo-way Binding

19

Two-way databinding

<input [(ngModel)]="user.name">

• Combines property and event binding in a single notation, using
the ngModel directive

• In two-way databinding,
> Change in the input box changes the corresponding property
> Change in the property gets reflected in the input box

• Two-way databinding has a convenience but it also has
performance implication
> Use it only when needed

20

Lab: Two-way databinding

• Create a new component called “two-way-databinding” in the
same directory of “databinding” component
> ng g c two-way-databinding --flat

• Create person object with name and age properties
person = { name: 'Sang', age: 99 }

• Add <input> element whose value is two-way bound with the
name property

• Add <input> element whose value is one-way bound with the
name property

• Study whenever a new value is entered in one <input> element,
how the other <input> reflects it
> Only the two-way databound input element will change the other

@Input() @Input()
(Custom Property (Custom Property
Binding)Binding)

22

@Input()

• Use it with a property in a child component in order to receive
external value set in template of the parent (hosting) component

 @Input()
 result: number = 5;

 @Input('result2')
 resultxxx = 15;

 // For string type to work, the property
 // value has to be " 'san francisco' " not “san francisco”
 @Input()
 city = "boston";

<h4> Custom property binding: </h4>
<my-child [result]='10' [result2]=20
 [city]=" 'san francisco' ">
</my-child>

Component class
of “my-child” (child element)

Inside of the template of
parent (hosting) component

23

@Input()

• The external value typically comes from property of a parent
component

 @Input()
 result: number;

 @Input()
 city: string;

<h4> Custom property binding: </h4>
<my-child [result]=”parentResult”
 [city]=" parentMethod()">
</my-child>

Inside of the template of
parent (hosting) component

Component class
of “my-child” (child element)

24

Lab: @Input

• Add a new property to the child component
> @Input() result: number
> @input() someValue: string – make sure the hosting component

pass it with single quote within double quote “ 'some String' ”

• Use property binding in the template of the parent (hosting)
component to pass value to the result property

• Try @Input('differentName')

Component Component
LifecycleLifecycle

26

Component LifeCycle

• Angular calls lifecycle hook methods on directives and
components as it creates, changes, and destroys them
> ngOnChanges – every time data-bound property gets changed
> ngOnInit – once when component is initialized
> ngDoCheck – every time Angular change detection cycle starts
> ngOnDestroy – once when component is destroyed

• Each interface has a single hook method whose name is the
interface name prefixed with ng
> OnInit interface has a hook method named ngOnInit
> OnDestroy interface has a hook method named ngOnDestroy

27

Example

export class DatabindingComponent implements OnInit, OnDestroy {

 ...
 constructor() { }

 ngOnInit() {
 console.log("ngOnInit called");
 }

 ngOnDestroy() {
 console.log("ngOnDestroy called");
 }

}

28

Lab: Component Lifecycle

• Log a message to the console whenever lifecyle methods get
called

• Optional lab
> Use *ngIf directive to remove a component and observe

ngOnDestroy() method gets called

29

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

