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Topics

• What is databinding?
• Interpolation
• Property binding
• Local template references
• Event binding
• Two-way databinding
• @Input (custom property binding)
• Component lifecycle
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What is and Why Databinding?

• We want to generate and display dynamic contents

• Without a framework-level databinding, a developer 
himself/herself would be responsible for
> Pushing data values into the HTML controls
> Handling user actions, which triggers value updates

• Angular databinding framework handles all these for you
> All you have to do is to use proper databinding markup's in the 

template
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Databinding between Component & Template

Pass data
to template

Listen to
events
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4 Schemes of Databinding

• Each scheme has a direction — from the DOM to component, to 
the DOM from component, or in both directions

• Three are one-way databinding and one is two-day databinding



InterpolationInterpolation
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Interpolation 

• {{ expression resolves to a string }}

• The expression is typically the name of a component property: 
Angular replaces that name with the string value of the property

<h3>
  {{ title }}
  <img src="{{ heroImageUrl }}" style="height:30px">
</h3>

• The expression can invoke methods of the host component

{{ "This is a message from " + getSomeData() }}

“title” is a component property

component method



9

Lab: Interpolation

• Add two properties with types to the component and display 
them using interpolation
> stringData: string
> numberData: number

• Add a method called getAllData() to the component and call it – 
getAllData() method should return combined value of stringData 
and numberData
> {{ "This is a message from " + getAllData() }}

• Optional lab
> Add “name” and “age” properties to the component
> Add getPersonalData() method to the component
> Access them using interpolation



Property BindingProperty Binding
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Property Binding

• [property] = “expression resolving to a required value type”
> “3+5”
> “propertyOfComponent”
> “methodOfComponent()” 

• Binding target can be a property of DOM element 
<input [value] = “expression”>
<button [disabled]=”expression”>   
<img [src] = “expression”>
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Lab: Property binding

• Try the string interpolation first
> <input type=”text” value=”{{ stringData }}”>

• Try property binding (to the DOM properties)
> <input  [value]=”stringData”>
> <input  [value]=”numberData”>  
> <button [disabled]="switch">Click me</button>
> <img [src]="imageSrc" alt="">  (Use  

"http://jpassion.com/images/duke.jpg")



Local Template Local Template 
ReferencesReferences
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Local template reference to DOM element

• You can provide local template references to a DOM element by 
using # 

• It is local to the template and is not available to the component 
class
<p #myParagraph> test </p>

<p>{{myParagraph.textContent}}</p>

<input type=”text” #myInput>

<button (click)=”onClick(myInput.value)”>



Event BindingEvent Binding
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Event Binding

• (click) = “expression handling the event”

• The (click) event binding typically calls a method in the 
component
<button (click)="onClick()"></button>

<input type=”text  #myinput>
<button (click)="onClick(myinput.value)"></button>

• Or inline expression can be used as well
<button (click)=”items.push(myinput.value)”></button>
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Lab: Event binding

• Add a button with event binding, when clicked, call a method in 
the component
> Just use console.log(“method is called”) inside the method to 

verify that the method is called

• Use event handling to switch on and switch off another button's 
disabled property

• Create an <input ..> element with local template reference
<input type=”text” #myinput>

• Add a button with event binding, when clicked, get a value of an 
<input> element via local template reference and display it back 
to the page
<button (click)=”onClick(myinput.value)”>Click me</button>



Two-way BindingTwo-way Binding
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Two-way databinding

<input [(ngModel)]="user.name">

• Combines property and event binding in a single notation, using 
the ngModel directive

• In two-way databinding, 
> Change in the input box changes the corresponding property
> Change in the property gets reflected in the input box

• Two-way databinding has a convenience but it also has 
performance implication
> Use it only when needed
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Lab: Two-way databinding

• Create a new component called “two-way-databinding” in the 
same directory of “databinding” component
> ng g c two-way-databinding --flat

• Create person object with name and age properties
person = { name: 'Sang', age: 99 }

• Add <input> element whose value is two-way bound with the 
name property

• Add <input> element whose value is one-way bound with the 
name property 

• Study whenever a new value is entered in one <input> element, 
how the other <input> reflects it
> Only the two-way databound input element will change the other



@Input() @Input() 
(Custom Property (Custom Property 
Binding)Binding)
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@Input()

• Use it with a property in a child component in order to receive 
external value set in template of the parent (hosting) component
  
  @Input()
  result: number = 5;

  @Input('result2')
  resultxxx = 15;

  // For string type to work, the property
  // value has to be " 'san francisco' " not “san francisco”
  @Input()
  city = "boston";

<h4> Custom property binding: </h4>
<my-child [result]='10' [result2]=20 
                  [city]=" 'san francisco' ">
</my-child>

Component class
of “my-child” (child element)

Inside of the template of
parent (hosting) component
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@Input()

• The external value typically comes from property of a parent 
component
  
  @Input()
  result: number;

  @Input()
  city: string;

<h4> Custom property binding: </h4>
<my-child [result]=”parentResult” 
                  [city]=" parentMethod()">
</my-child>

Inside of the template of
parent (hosting) component

Component class
of “my-child” (child element)
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Lab: @Input

• Add a new property to the child component
> @Input() result: number
> @input() someValue: string – make sure the hosting component 

pass it with single quote within double quote “ 'some String' ”

• Use property binding in the template of the parent (hosting) 
component to pass value to the result property

• Try @Input('differentName')



Component Component 
LifecycleLifecycle
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Component LifeCycle

• Angular calls lifecycle hook methods on directives and 
components as it creates, changes, and destroys them
> ngOnChanges – every time data-bound property gets changed
> ngOnInit – once when component is initialized
> ngDoCheck – every time Angular change detection cycle starts
> ngOnDestroy – once when component is destroyed

• Each interface has a single hook method whose name is the 
interface name prefixed with ng
> OnInit interface has a hook method named ngOnInit
> OnDestroy interface has a hook method named ngOnDestroy
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Example

export class DatabindingComponent implements OnInit, OnDestroy {

  ...
  constructor() { }

  ngOnInit() {
    console.log("ngOnInit called");
  }

  ngOnDestroy() {
    console.log("ngOnDestroy called");
  }

}



28

Lab: Component Lifecycle

• Log a message to the console whenever lifecyle methods get 
called

• Optional lab
> Use *ngIf directive to remove a component and observe 

ngOnDestroy() method gets called
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