
1

REST IntroductionREST Introduction

Sang ShinSang Shin
““Code with Passion!”Code with Passion!”

1

2

Topics

• What is and Why REST?

• Principles of RESTful architecture

• REST is everywhere

• REST vs SOAP

• JAX-RS

• Tools

• SpringMVC REST APIs vs Spring REST/JAX-RS APIs

What is and Why What is and Why
REST?REST?

4

The World Before REST

• Many different communication standards
> RMI, SOAP, CORBA, DCOM, etc.

• From many different parties
> Sun, Microsoft, IBM, etc

• Caused many problems
> Bad interoperability
> Hard to implement
> Vendor 'lock-in'

5

What is and Why REST?

• REpresentational State Transfer
> Introduced by Roy Fielding's in his doctoral thesis “Architectural

Styles and the Design of Network-based Software Architecture”

• He tried to address the following questions
> Why is the Web so prevalent and ubiquitous?
> What makes Web scale?
> How can I apply the architecture of the Web to the “applications”?

• He found the same set of architectural styles that make Web so
successful can be applied to the development/deployment/usage
of “applications” and he calls it REST

6

Benefits of REST: Deployment standpoint

• Scalable

• High performance

• Loosely coupled

• Fault-tolerant

• Secure

• Interoperable

7

Benefits of REST: Development standpoint

• Simple, intuitive, consistent

• Friendly to developer

• Programming language independent

• Most languages have REST support

• Explorable via HTTP tool

REST ArchitecturalREST Architectural
PrinciplesPrinciples

9

REST Architectural Principles

• Addressability

• Uniform interface

• Representation-oriented

• Stateless

• HATEOAS (Hypermedia As The Engine Of Application State)

• Cacheable

10

Addressability

• Every resource has a unique address in the form of a URI

• URI structure
> http://host:port/path?query1=value1&query2=value2#fragment
> https://host:port/path?query1=value1&qiery2=value2#fragment

• Characters allowed
> a-z, A-Z, 0-9, ., -, *, _
> Other characters get encoded (space to +, others to %xx)

• Each resource having a unique URI enables “resources linking”
(HATEOAS)
> These links can be embedded into the document
> The links embedded in the document carry states

11

Uniform Interface

• HTTP has a fixed set of methods, each of which has specific
purpose and pre-defined behavior
> GET, PUT, DELETE, POST, HEAD, PATCH, OPTIONS

• Safety and Idempotency
> Safe methods are HTTP methods that do not modify resources
> An idempotent HTTP method is a HTTP method that can be called

many times without different outcomes

12

Benefits of Uniform Interface

• Simplicity
> There is no need for IDL-like contract (IDL in CORBA, WSDL in

SOAP) that specifies what methods are available

• Easy accessibility
> The client does not need any special library or stub (like in the

case of SOAP) in order to access the service: all they need is
HTTP client library

• Interoperability
> Due to simple requirements, REST clients and REST services are

highly interoperable (since there are a lot less moving parts)

• Scalability
> You can take advantage of built-in caching capability of HTTP

13

CRUD Operations are Performed through
HTTP method + URI

Verb Noun

Create (Single) POST Collection URI

Read (Multiple) GET Collection URI

Read (Single) GET Entry URI

Update (Single) PUT Entry URI

Delete (Single) DELETE Entry URI

4 main HTTP methodsCRUD Operations

14

Representation-oriented

• Each service (or resource) is addressable through a specific
URI and representations are exchanged between client and
server

• With GET, you get current representation of the resource

• With PUT or POST, you pass a representation of a resource to
the server so that the underlying resource state can change

• The representation has self-descriptive messages

15

Stateless Communication

• What does “stateless” mean?
> It does NOT mean your RESTful application can't have a state – it

simply means the server does not maintain client session data
> If client session data needs to be maintained, it should be

maintained by the client and transferred to the server with each
request as needed

• Benefits of stateless communication
> Scalability (because server does not maintain the client session)
> Reliability (because there is no lost client session data in case of

server crash)

16

HATEOAS

• Hypermedia As The Engine of Application State (HATEOAS)

• It enables document centric approach with embedding links (for
other resources) within that document
> In the same way the web pages we, humans, visited contains links

• Each document that is returned guides the client to the other
resources
> In the same way the web pages we, humans, visited gave us the

links to click through

17

Cacheable

• Response messages from the service to its consumers are
explicitly labeled as cacheable or non-cacheable

• The service, the consumer, or one of the intermediary
middleware components can cache the response for reuse in
later requests

REST is REST is
EverywhereEverywhere

19

REST is Everywhere

• Pretty much all services on the internet are exposed as RESTful
services
> Amazon
> Google
> Facebook
> Tweeter
> LinkedIn
> ...

20

programmableweb.com

• Maintains all REST APIs on the net

21

Lab:Lab:
Exercise 2: Explore REST APIs Exercise 2: Explore REST APIs
4361_javarest_introduction.zip4361_javarest_introduction.zip

REST vs. SOAPREST vs. SOAP

23

REST vs SOAP

• SOAP-based web service
> Few URIs (nouns), many custom methods (verbs)

– musicPort.getRecordings(“beatles”)

> Uses HTTP as transport for SOAP messages

• RESTful web service
> Many resources (nouns), few fixed methods(verbs)

– GET /music/artists/beatles/recordings

> HTTP is the protocol

24

SOAP Service and REST Resource

• SOAP based web services is about services
> Stock quote service
quoteService.purchase(“goog”, 2000);

• REST is Resource-Oriented Architecture
> Stock quote resource
> Resources are manipulated by exchanging representations
> Eg. purchasing stock

– Manipulate my portfolio resource

– Handle a POST in a stock resource that I own

– POST /mystocks/goog

25

Advantages of SOAP over REST

• Transport independence
> You can use SOAP over any kind of transport (HTTP/S, JMS,

SMTP) while REST works only over HTTP/S

• Well-defined standards
> SOAP has well-defined standards in the area of security,

transaction, reliability while REST lacks the standards in these
areas

> SOAP better suits with stateful operations

• Well-defined service contact via WSDL
> REST now has WADL

26

Advantages of REST over SOAP

• Simplicity

• REST works with different representations (XML, JSON,
XHTML, etc) while SOAP works only with XML (unless you use
different encoding style)

JAX-RSJAX-RS

(Java Specification for (Java Specification for
REST) REST)

28

Problem in Using Servlet API For
Exposing a Resource (Too much coding)

public class Artist extends HttpServlet {

 public enum SupportedOutputFormat {XML, JSON};

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String accept = request.getHeader("accept").toLowerCase();
 String acceptableTypes[] = accept.split(",");
 SupportedOutputFormat outputType = null;
 for (String acceptableType: acceptableTypes) {
 if (acceptableType.contains("*/*") || acceptableType.contains("application/*") ||
 acceptableType.contains("application/xml")) {
 outputType=SupportedOutputFormat.XML;
 break;
 } else if (acceptableType.contains("application/json")) {
 outputType=SupportedOutputFormat.JSON;
 break;
 }
 }
 if (outputType==null)
 response.sendError(415);
 String path = request.getPathInfo();
 String pathSegments[] = path.split("/");
 String artist = pathSegments[1];
 if (pathSegments.length < 2 && pathSegments.length > 3)
 response.sendError(404);
 else if (pathSegments.length == 3 && pathSegments[2].equals("recordings")) {
 if (outputType == SupportedOutputFormat.XML)
 writeRecordingsForArtistAsXml(response, artist);
 else
 writeRecordingsForArtistAsJson(response, artist);
 } else {
 if (outputType == SupportedOutputFormat.XML)
 writeArtistAsXml(response, artist);
 else
 writeArtistAsJson(response, artist);
 }
 }
 private void writeRecordingsForArtistAsXml(HttpServletResponse response, String artist) { ... }
 private void writeRecordingsForArtistAsJson(HttpServletResponse response, String artist) { ... }
 private void writeArtistAsXml(HttpServletResponse response, String artist) { ... }
 private void writeArtistAsJson(HttpServletResponse response, String artist) { ... }
}

29

Design Goals of JAX-RS: Java API for
RESTful Web Services

• Support REST concepts
> Everything is a resource
> Every resource is address'able via URI
> HTTP methods provides uniform interface
> Representations (formats)
> HATEOAS

• Support High level and Declarative programming model
> Use @ annotation in POJOs

• Generate or hide the boilerplate code
> No need to write boilerplate code for every app

30

Implementations of JAX-RS (JSR 311)

• Jersey – reference implementation of JAX-RS
> Download it from http://jersey.dev.java.net
> Comes with Glassfish, other Java EE 6+ servers

• Other open source implementations of JAX-RS
> Apache CXF
> JBoss RESTEasy
> Restlet

http://jersey.dev.java.net/

Tools Tools

32

Development Tools

• IDE – for general purpose RESTful Web service development
> Eclipse, Intellij IDEA, NetBeans

• Client tools – for sending HTTP requests
> “Postman” Chrome Application
> RESTClient
> Several command line tools

– curl http://curl.haxx.se/

> soapUI

• Browser

33

Lab:Lab:
Exercise 1: Tools Exercise 1: Tools

4361_javarest_introduction.zip4361_javarest_introduction.zip

SpringMVC REST APIs vsSpringMVC REST APIs vs

Spring REST/JAX-RS APIs Spring REST/JAX-RS APIs

35

Comparison

• JAX-RS is designed with REST in mind
> SpringMVC REST is an extension to MVC with REST features

• JAX-RS is more feature rich than SpringMVC REST
> More APIs are available

• JAX-RS more portable than SpringMVC REST
> It is Java standard

You can build Spring REST application using either SpringMVC
REST APIs or JAX-RS APIs

36

How to use JAX-RS APIs in Spring

• Add the following dependency
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jersey</artifactId>
</dependency>

• Add JerseyConfig.java
@Component
@ApplicationPath("/resources")
public class JerseyConfig extends ResourceConfig {

 public JerseyConfig() {
 register(CustomersResource.class);
 register(OrdersResource.class);
 }

}

37

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

