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Topics

• What is and Why REST?

• Principles of RESTful architecture

• REST is everywhere

• REST vs SOAP

• JAX-RS

• Tools

• SpringMVC REST APIs vs Spring REST/JAX-RS APIs



What is and Why What is and Why 
REST?REST?
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The World Before REST

• Many different communication standards
> RMI, SOAP, CORBA, DCOM, etc.

• From many different parties
> Sun, Microsoft, IBM, etc

• Caused many problems
> Bad interoperability
> Hard to implement
> Vendor 'lock-in'
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What is and Why REST?

• REpresentational State Transfer
> Introduced by Roy Fielding's in his doctoral thesis “Architectural 

Styles and the Design of Network-based Software Architecture”

• He tried to address the following questions
> Why is the Web so prevalent and ubiquitous?
> What makes Web scale?
> How can I apply the architecture of the Web to the “applications”?

• He found the same set of architectural styles that make Web so 
successful can be applied to the development/deployment/usage 
of  “applications” and he calls it REST
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Benefits of REST: Deployment standpoint

• Scalable

• High performance

• Loosely coupled

• Fault-tolerant

• Secure

• Interoperable
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Benefits of REST: Development standpoint

• Simple, intuitive, consistent

• Friendly to developer

• Programming language independent

• Most languages have REST support

• Explorable via HTTP tool



REST ArchitecturalREST Architectural
PrinciplesPrinciples
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REST Architectural Principles

• Addressability

• Uniform interface

• Representation-oriented

• Stateless

• HATEOAS (Hypermedia As The Engine Of Application State)

• Cacheable
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Addressability

• Every resource has a unique address in the form of a URI

• URI structure
> http://host:port/path?query1=value1&query2=value2#fragment
> https://host:port/path?query1=value1&qiery2=value2#fragment

• Characters allowed
> a-z, A-Z, 0-9, ., -, *, _
> Other characters get encoded (space to +, others to %xx)

• Each resource having a unique URI enables “resources linking” 
(HATEOAS)
> These links can be embedded into the document 
> The links embedded in the document carry states 
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Uniform Interface

• HTTP has a fixed set of methods, each of which has specific 
purpose and pre-defined behavior
> GET, PUT, DELETE, POST, HEAD, PATCH, OPTIONS

• Safety and Idempotency
> Safe methods are HTTP methods that do not modify resources
> An idempotent HTTP method is a HTTP method that can be called 

many times without different outcomes
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Benefits of Uniform Interface

• Simplicity
> There is no need for IDL-like contract (IDL in CORBA, WSDL in 

SOAP) that specifies what methods are available 

• Easy accessibility
> The client does not need any special library or stub (like in the 

case of SOAP) in order to access the service: all they need is 
HTTP client library 

• Interoperability
> Due to simple requirements, REST clients and REST services are 

highly interoperable (since there are a lot less moving parts)

• Scalability
> You can take advantage of built-in caching capability of HTTP
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CRUD Operations are Performed through 
HTTP method + URI

Verb Noun

Create (Single) POST Collection URI 

Read (Multiple) GET Collection URI

Read (Single) GET Entry URI

Update (Single) PUT Entry URI

Delete (Single) DELETE Entry URI

4 main HTTP methodsCRUD Operations
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Representation-oriented

• Each service (or resource) is addressable through a specific 
URI and representations are exchanged between client and 
server

• With GET, you get current representation of the resource

• With PUT or POST, you pass a representation of a resource to 
the server so that the underlying resource state can change

• The representation has self-descriptive messages
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Stateless Communication

• What does “stateless” mean?
> It does NOT mean your RESTful application can't have a state – it 

simply means the server does not maintain client session data
> If client session data needs to be maintained, it should be  

maintained by the client and transferred to the server with each 
request as needed

• Benefits of stateless communication
> Scalability (because server does not maintain the client session)
> Reliability (because there is no lost client session data in case of  

server crash)
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HATEOAS

• Hypermedia As The Engine of Application State (HATEOAS)

• It enables document centric approach with embedding links (for 
other resources) within that document
> In the same way the web pages we, humans, visited contains links

• Each document that is returned guides the client to the other 
resources
> In the same way the web pages we, humans, visited gave us the 

links to click through
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Cacheable

• Response messages from the service to its consumers are 
explicitly labeled as cacheable or non-cacheable

• The service, the consumer, or one of the intermediary 
middleware components can cache the response for reuse in 
later requests



REST is REST is 
EverywhereEverywhere
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REST is Everywhere

• Pretty much all services on the internet are exposed as RESTful 
services
> Amazon
> Google
> Facebook
> Tweeter
> LinkedIn
> ...
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programmableweb.com

• Maintains all REST APIs on the net
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Lab:Lab:
Exercise 2: Explore REST APIs Exercise 2: Explore REST APIs 
4361_javarest_introduction.zip4361_javarest_introduction.zip



REST vs. SOAPREST vs. SOAP
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REST vs SOAP

• SOAP-based web service
> Few URIs (nouns), many custom methods (verbs)

– musicPort.getRecordings(“beatles”)

> Uses HTTP as transport for SOAP messages

• RESTful web service
> Many resources (nouns), few fixed methods(verbs)

– GET /music/artists/beatles/recordings

> HTTP is the protocol
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SOAP Service and REST Resource

• SOAP based web services is about services 
> Stock quote service
quoteService.purchase(“goog”, 2000);

• REST is Resource-Oriented Architecture
> Stock quote resource
> Resources are manipulated by exchanging representations
> Eg. purchasing stock

– Manipulate my portfolio resource

– Handle a POST in a stock resource that I own

– POST /mystocks/goog
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Advantages of SOAP over REST

• Transport independence
> You can use SOAP over any kind of transport (HTTP/S, JMS, 

SMTP) while REST works only over HTTP/S

• Well-defined standards
> SOAP has well-defined standards in the area of security, 

transaction, reliability while REST lacks the standards in these 
areas

> SOAP better suits with stateful operations

• Well-defined service contact via WSDL
> REST now has WADL
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Advantages of REST over SOAP

• Simplicity

• REST works with different representations (XML, JSON, 
XHTML, etc) while SOAP works only with XML (unless you use 
different encoding style)



  
JAX-RSJAX-RS

(Java Specification for (Java Specification for 
REST) REST) 
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Problem in Using Servlet API For
Exposing a Resource (Too much coding)

public class Artist extends HttpServlet {
    
    public enum SupportedOutputFormat {XML, JSON};

    protected void doGet(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
        String accept = request.getHeader("accept").toLowerCase();
        String acceptableTypes[] = accept.split(",");
        SupportedOutputFormat outputType = null;
        for (String acceptableType: acceptableTypes) {
            if (acceptableType.contains("*/*") || acceptableType.contains("application/*") ||
                acceptableType.contains("application/xml")) {
                outputType=SupportedOutputFormat.XML;
                break;
            } else if (acceptableType.contains("application/json")) {
                outputType=SupportedOutputFormat.JSON;
                break;
            }
        }
        if (outputType==null)
            response.sendError(415);
        String path = request.getPathInfo();
        String pathSegments[] = path.split("/");
        String artist = pathSegments[1];
        if (pathSegments.length < 2 && pathSegments.length > 3)
            response.sendError(404);
        else if (pathSegments.length == 3 && pathSegments[2].equals("recordings")) {
            if (outputType == SupportedOutputFormat.XML)
                writeRecordingsForArtistAsXml(response, artist);
            else
                writeRecordingsForArtistAsJson(response, artist);
        } else {
            if (outputType == SupportedOutputFormat.XML)
                writeArtistAsXml(response, artist);
            else
                writeArtistAsJson(response, artist);
        }
    }
    private void writeRecordingsForArtistAsXml(HttpServletResponse response, String artist) { ... }
    private void writeRecordingsForArtistAsJson(HttpServletResponse response, String artist) { ... }
    private void writeArtistAsXml(HttpServletResponse response, String artist) { ... }
    private void writeArtistAsJson(HttpServletResponse response, String artist) { ... }
}
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Design Goals of JAX-RS: Java API for 
RESTful Web Services 

• Support REST concepts
> Everything is a resource
> Every resource is address'able via URI
> HTTP methods provides uniform interface
> Representations (formats)
> HATEOAS

• Support High level and Declarative programming model
> Use @ annotation in POJOs

• Generate or hide the boilerplate code
> No need to write boilerplate code for every app
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Implementations of JAX-RS (JSR 311) 

• Jersey – reference implementation of JAX-RS
> Download it from http://jersey.dev.java.net
> Comes with Glassfish, other Java EE 6+ servers

• Other open source implementations of JAX-RS
> Apache CXF
> JBoss RESTEasy
> Restlet

http://jersey.dev.java.net/


  
Tools Tools 
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Development Tools

• IDE – for general purpose RESTful Web service development
> Eclipse, Intellij IDEA, NetBeans

• Client tools – for sending HTTP requests
> “Postman” Chrome Application
> RESTClient
> Several command line tools

– curl  http://curl.haxx.se/

> soapUI

• Browser
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Lab:Lab:
Exercise 1: Tools Exercise 1: Tools 

4361_javarest_introduction.zip4361_javarest_introduction.zip



  
SpringMVC REST APIs vsSpringMVC REST APIs vs

Spring REST/JAX-RS APIs Spring REST/JAX-RS APIs 
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Comparison 

• JAX-RS is designed with REST in mind
> SpringMVC REST is an extension to MVC with REST features

• JAX-RS is more feature rich than SpringMVC REST
> More APIs are available

• JAX-RS more portable than SpringMVC REST
> It is Java standard

You can build Spring REST application using either SpringMVC 
REST APIs or JAX-RS APIs
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How to use JAX-RS APIs in Spring 

• Add the following dependency
<dependency>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-jersey</artifactId>
</dependency>

• Add JerseyConfig.java
@Component
@ApplicationPath("/resources")
public class JerseyConfig extends ResourceConfig {

    public JerseyConfig() {
        register(CustomersResource.class);
        register(OrdersResource.class);
    }

}
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  Code with Passion!Code with Passion!
JPassion.comJPassion.com
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