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Topics
• What is and Why O/R Mapper (ORM)?
• Why JPA?
• Java Persistence Requirements
• JPA O/R Mapping 
• What is an entity?

• Entity Manager 

• Persistence context 

• Persistence unit
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What is and WhyWhat is and Why
use O/R Mapper (ORM)?use O/R Mapper (ORM)?
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Why Object/Relational Mapping (ORM)?
• A major part of any enterprise application development project 

is the persistence layer
– Accessing and manipulating persistent data typically with relational 

database

• ORM handles Object-relational impedance mismatch 
– Data lives in the relational database, which is table driven (with rows 

and columns)
– Relational database is designed for fast query operation of table-

driven data
– We (Java developers) want to work with objects, not rows and 

columns of table, however



Why JPA?Why JPA?
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What is JPA?

• Standard ORM framework for Java platform

• Enables transparent POJO persistence
> Let you work without being constrained by table-driven relational 

database model – handles Object-Relational impedance mismatch
> Like Hibernate

• Lets you build persistent objects with common OO programing 
concepts
> Inheritance, Polymorphism
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Java PersistenceJava Persistence
RequirementsRequirements
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Java Persistence Requirements (1)

• Simplify the persistence programming 
> Default over configuration (Convention over configuration)
> Eliminate the need of the XML-based deployment descriptor

• Provide light-weight persistence model
> In both programming model and deployment
> Runtime performance

• Enable testability outside of the containers
> Enables test-driven development
> Test entities as part of nightly-build process
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Java Persistence Requirements (2)
• Support rich domain modelling 

> Support inheritance and polymorphism among entities

• Provide standardized and efficient ORM
> Optimized for relational database
> Standardize annotations and XML configuration files

• Provide extensive querying capabilities
> Comparable to Hibernate query capabilities

• Support for pluggable, third-party 
persistence providers

> Through persistence unit - represented by persistence.xml
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Common Java Persistence Between
J2SE and J2EE Environments 

• Persistence API expanded to include use outside of EJB 
container

• Evolved into “common” Java persistence API  between Java SE 
and Java EE apps
> You can use  Java persistence API (JPA) in Java SE, Web, and EJB 

applications



O/R MappingO/R Mapping
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O/R Mapping Annotations

• Comprehensive set of annotations defined for mapping
> Relationships
> Joins
> Database tables and columns
> Much more
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An Example Data Model

Customer

int idString name
int c_rating
Image photo
Set<Order> orders
Collection<Product>
   products
...

Order

int id
Customer cust
...

Product

int id
Collection<Customer>
   custs
...

1
M

M

N

Maps entity state to data store
Maps relationship to other entities
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Simple Mapping

Mapping defaults to matching column name. Only 
configure if entity field and table column names are 
different.  (By the way, @Lob is for large object)

public class Customer { 

    int id;

    String name;  

    int c_rating;

    Image photo;
}

@Entity(access=FIELD)

@Column(name=“CREDIT”)

@Id

@Lob

CUSTOMER

ID NAME CREDIT PHOTO



What is an Entity?What is an Entity?
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What is an Entity?
• Plain Old Java Object (POJO)

> Created by means of new keyword just like a normal Java class
> Supports OO programming model – inheritance, polymorphic relationship

• May be in either persistent (managed) or non-persistent state (non-
managed)
> Example of non-persistent state is “transient” state

• Have persistent identity
> When it is in managed state

• Can extend other entity and non-entity classes
> Inheritance

• Serializable; usable as detached objects in other tiers
> No need for Data Transfer Objects (DTOs) anymore
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Entity Class (@Entity)

• Annotated with @Entity

• Can extend another entity

• Programming requirement
> Must have a primary key field
> Must have a public no-arg constructor
> Instance variables must not be public
> Must not be final or have final methods
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Default Mapping

• Entity name → table name (customizable via @Table)
• Attribute name → column name (customizable via @Column)
• Data type mapping (some differences among databases)

> String → VARCHAR(255)
> Long, long → BIGINT
> Double, double → DOUBLE
> Boolean → SMALLINT
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Entity Example
@Entity
public class Customer implements Serializable {

@Id protected Long id;
protected String name;
@Embedded protected Address address;
protected PreferredStatus status;
@Transient protected int orderCount;

public Customer() {}

public Long getId() {return id;}
protected void setId(Long id) {this.id = id;}

public String getName() {return name;}
public void setName(String name) {this.name = name;}

…
}
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Entity Identity (@Id, @GeneratedValue)

• Every entity has a persistence identity
> Maps to primary key in database

• Can correspond to simple type
> @Id—single field/property in entity class
> @GeneratedValue—value can be generated automatically using various 

strategies
> AUTO - Choose type depending on database, e.g. IDENTITY for MySQL
> IDENTITY - using a database identity column.
> SEQUENCE - using a database sequence
> TABLE  - Use a sequence table for key generation (most portable)
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Lab:Lab:

Exercise 1: JPA Basic AnnotationsExercise 1: JPA Basic Annotations
4320_jpa_basics.zip4320_jpa_basics.zip
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@Transient

• Use it for any attribute that does not map to a column

@Entity
@Table(name="my_own_employee_table")
public class Employee {
    
    @Id
    private int id;
    @Column(name="my_name")
    private String name;
    @Column(name="my_bonus")
    private long salary;
    @Transient
    private Double bonus;
    @Transient
    private Boolean b;
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@Temporal

• Use it to map Date or Calendar attribute

@Entity
public class Employee {

    @Id
    private int id;

    @Temporal(TemporalType.DATE)
    @Column(name = "my_birthday")
    private Date dateOfBirth;

    @Temporal(TemporalType.TIME)
    private Date currentTime;

    @Temporal(TemporalType.TIMESTAMP)
    private Calendar dateOfHiring;
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@Enumerated
• Use it  to map enum

public enum EmployeeType {
    ADMIN,
    MANAGER,
    OFFICER
}

@Entity
@Table(name="my_own_employee_table")
public class Employee {
    
    //@Enumerated(EnumType.STRING)
    @Enumerated(EnumType.ORDINAL)
    private EmployeeType employeeType;
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Lab:Lab:

Exercise 2: JPA Misc. AnnotationsExercise 2: JPA Misc. Annotations
4320_jpa_basics.zip4320_jpa_basics.zip



Entity Manager &Entity Manager &
Persistence Context &Persistence Context &

Persistence UnitPersistence Unit
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Key Concepts of JPA Operations

• Entity manager

• Persistence context

• Persistence unit
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What is EntityManager? 

• Manages the state and life-cycle of entities 
> Creates and removes entity instances within the persistence context

• Handles querying entities within a persistence context
> Performs finding entities via their primary keys

• Lock entities
• Accessible through EntityManager Java interface

> The life-cycle operations are defined in the EntityManager interface

• Similar in functionality to Hibernate Session
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Types of Entity Managers

• #1: Application-Created Entity Manager (Java SE environment)
> Entity manager is created and managed by the application

• #2: Container-Created Entity Manager (Java EE environment)
> Entity manager is created and managed by the Container
> Entity manager will be provided to the application via dependency injection
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#1: Application Created EM (Java SE)

    public static void main(String[] args) {
        // Application is responsible for explicitly obtaining Entity Manager
        // and life-cycle of it
        EntityManagerFactory emf = 
            Persistence.createEntityManagerFactory("EmployeeService");
        EntityManager em = emf.createEntityManager();
        
        Collection emps = em.createQuery("SELECT e FROM Employee e")
                            .getResultList();

        // Some code

        em.close();
        emf.close();
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#2: Container-Created EM (Java EE)
@Stateless 
public class OrderEntry { 
     

// Entity Manager is created & injected by the container.
@PersistenceContext
EntityManager em;

public void enterOrder(int custID, Order newOrder){

                        // Use find method to locate customer entity
  Customer c = em.find(Customer.class, custID);
                        // Add a new order to the Orders 
  c.getOrders().add(newOrder);
  newOrder.setCustomer(c);
  }

// No need to close EntityManager
}
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Persistence Context & Entity Manager

• Persistence context 
> Represents a set of managed entity instances at runtime 
> “Entity instance is in managed state” means it is contained in a particular 

persistent context
> All entity instances in a particular persistent context behaves in a 

consistent manner – for example, all changed entity instances will be 
persisted to the database table next commit or flush

• Entity manager 
> Manages persistence context 
> Performs life-cycle operations on entities maintained in the persistence 

context 



Manipulation ofManipulation of
Entities (in the Entities (in the 

PersistenceContext) viaPersistenceContext) via
EntityManagerEntityManager



34

Persist Operation

public Order createNewOrder(Customer customer) {
    // Create new object instance – entity is in transient state

Order order = new Order(customer);

    //  After persist() method is called upon the entity,
    //  the entity state is changed to managed.  In other
    //  words, the entity is added to the persistence context.
    //  On the next flush or commit, the newly persisted 
    //  instances will be inserted into the database table.

entityManager.persist(order);

return order;
} 
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Find and Remove Operations

public void removeOrder(Long orderId) {
Order order = 

          // Try to find an entity in the persistence context 
          entityManager.find(Order.class, orderId);

   // The instances will be deleted from the the 
   // persistence context first.  
   // And on the next flush or commit, corresponding
   // row will be deleted from the database table.

entityManager.remove(order);
} 
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Merge Operation

public OrderLine updateOrderLine(OrderLine orderLine) {
   
   // The merge method returns a managed copy of 
   // the given detached entity.  In other words, the
   // entity is now in the persistence context.

return entityManager.merge(orderLine);
} 



37

EntityManager Methods 
• void persist(Object entity) – makes an instance managed (i.e. persistent)
• void remove(Object entity) - removes the entity from the persistence context 

(when the transaction is committed or persistence context is flushed, the 
corresponding row in the table is also removed – difference from “detach”) 

• void detach(Object entity) - detaches the entity from the persistence context
• entity = merge(Object entity) - synchronize the state of detached entity, 

making it managed again, returns it
• void refresh(Object entity) - reloads state from the database
• find(Class<T> entityClass, Object primaryKey) - find an entity
• void flush() - synchronize the persistence context to the underlying database
• void clear() - clears the persistence context, causing all managed entities to 

become detached
• boolean contains(Object entity) - checks if the instance belongs to the 

current persistence context
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Lab:Lab:

Exercise 3: Life cycle methodsExercise 3: Life cycle methods
jpa_basics_lifecyclejpa_basics_lifecycle
4320_jpa_basics.zip4320_jpa_basics.zip



  Persistence Unit Persistence Unit 
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What is Persistence Unit?

• Entity manager handles the communication to the database 
through a persistence provider

• When Entity manager is created either by Application or 
Container, configuration information is needed for configuring the 
persistence manager
> In the same way, your JDBC application need to have configuration 

information

• The configuration data is called “Persistence Unit”

• Represented by persistence.xml 
> Every JPA application has to have a persistence.xml file
> Located under /META-INF
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What Info. Does Persistence Unit Define?

• Name of the persistence unit

• Transaction type
> “RESOURCE_LOCAL” for application-managed environment
> “JTA” for container-managed environment

• Persistence provider class

• Entity classes (only for Java SE application)

• Table generation strategy

• Database related
> “Database connection properties” for application-managed environment
> “Datasource” for container-managed environment (since Datasource 

already captures the database connection information) – datasources are 
created and managed separately
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persistence.xml (JPA 1.0)  - for Application
Managed environment 
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
  <persistence-unit name="EmployeeService" transaction-type="RESOURCE_LOCAL">
    <provider>oracle.toplink.essentials.PersistenceProvider</provider>
    <class>entities.Employee</class>
    <properties>
      <property name="toplink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
      <property name="toplink.jdbc.url" value="jdbc:derby://localhost:1527/testdb"/>
      <property name="toplink.jdbc.user" value="app"/>
      <property name="toplink.jdbc.password" value="app"/>
      <!-- enable this property to see SQL and other logging -->
      <!-- property name="toplink.logging.level" value="FINE"/ -->
      <property name="toplink.ddl-generation" value="drop-and-create-tables"/>
    </properties>
  </persistence-unit>
</persistence>

Persistence 
Provider
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persistence.xml (JPA 1.0)  - for Container
Managed environment 
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
  <persistence-unit name="jsf-jpa-war" transaction-type="JTA">
    <jta-data-source>jdbc/__default</jta-data-source>
    <properties>
      <!-- use this property if target server is GlassFish V3 with EclipseLink -->
      <property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
      <!-- use this property if toplink is a target server persistence provider
      <property name="toplink.ddl-generation" value="drop-and-create-tables"/> -->
    </properties>
  </persistence-unit>
</persistence>
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