
1

JPA BasicsJPA Basics

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics
• What is and Why O/R Mapper (ORM)?
• Why JPA?
• Java Persistence Requirements
• JPA O/R Mapping
• What is an entity?

• Entity Manager

• Persistence context

• Persistence unit

3

What is and WhyWhat is and Why
use O/R Mapper (ORM)?use O/R Mapper (ORM)?

4

Why Object/Relational Mapping (ORM)?
• A major part of any enterprise application development project

is the persistence layer
– Accessing and manipulating persistent data typically with relational

database

• ORM handles Object-relational impedance mismatch
– Data lives in the relational database, which is table driven (with rows

and columns)
– Relational database is designed for fast query operation of table-

driven data
– We (Java developers) want to work with objects, not rows and

columns of table, however

Why JPA?Why JPA?

6

What is JPA?

• Standard ORM framework for Java platform

• Enables transparent POJO persistence
> Let you work without being constrained by table-driven relational

database model – handles Object-Relational impedance mismatch
> Like Hibernate

• Lets you build persistent objects with common OO programing
concepts
> Inheritance, Polymorphism

7

Java PersistenceJava Persistence
RequirementsRequirements

8

Java Persistence Requirements (1)

• Simplify the persistence programming
> Default over configuration (Convention over configuration)
> Eliminate the need of the XML-based deployment descriptor

• Provide light-weight persistence model
> In both programming model and deployment
> Runtime performance

• Enable testability outside of the containers
> Enables test-driven development
> Test entities as part of nightly-build process

9

Java Persistence Requirements (2)
• Support rich domain modelling

> Support inheritance and polymorphism among entities

• Provide standardized and efficient ORM
> Optimized for relational database
> Standardize annotations and XML configuration files

• Provide extensive querying capabilities
> Comparable to Hibernate query capabilities

• Support for pluggable, third-party
persistence providers

> Through persistence unit - represented by persistence.xml

10

Common Java Persistence Between
J2SE and J2EE Environments

• Persistence API expanded to include use outside of EJB
container

• Evolved into “common” Java persistence API between Java SE
and Java EE apps
> You can use Java persistence API (JPA) in Java SE, Web, and EJB

applications

O/R MappingO/R Mapping

12

O/R Mapping Annotations

• Comprehensive set of annotations defined for mapping
> Relationships
> Joins
> Database tables and columns
> Much more

13

An Example Data Model

Customer

int idString name
int c_rating
Image photo
Set<Order> orders
Collection<Product>
 products
...

Order

int id
Customer cust
...

Product

int id
Collection<Customer>
 custs
...

1
M

M

N

Maps entity state to data store
Maps relationship to other entities

14

Simple Mapping

Mapping defaults to matching column name. Only
configure if entity field and table column names are
different. (By the way, @Lob is for large object)

public class Customer {

 int id;

 String name;

 int c_rating;

 Image photo;
}

@Entity(access=FIELD)

@Column(name=“CREDIT”)

@Id

@Lob

CUSTOMER

ID NAME CREDIT PHOTO

What is an Entity?What is an Entity?

16

What is an Entity?
• Plain Old Java Object (POJO)

> Created by means of new keyword just like a normal Java class
> Supports OO programming model – inheritance, polymorphic relationship

• May be in either persistent (managed) or non-persistent state (non-
managed)
> Example of non-persistent state is “transient” state

• Have persistent identity
> When it is in managed state

• Can extend other entity and non-entity classes
> Inheritance

• Serializable; usable as detached objects in other tiers
> No need for Data Transfer Objects (DTOs) anymore

17

Entity Class (@Entity)

• Annotated with @Entity

• Can extend another entity

• Programming requirement
> Must have a primary key field
> Must have a public no-arg constructor
> Instance variables must not be public
> Must not be final or have final methods

18

Default Mapping

• Entity name → table name (customizable via @Table)
• Attribute name → column name (customizable via @Column)
• Data type mapping (some differences among databases)

> String → VARCHAR(255)
> Long, long → BIGINT
> Double, double → DOUBLE
> Boolean → SMALLINT

19

Entity Example
@Entity
public class Customer implements Serializable {

@Id protected Long id;
protected String name;
@Embedded protected Address address;
protected PreferredStatus status;
@Transient protected int orderCount;

public Customer() {}

public Long getId() {return id;}
protected void setId(Long id) {this.id = id;}

public String getName() {return name;}
public void setName(String name) {this.name = name;}

…
}

20

Entity Identity (@Id, @GeneratedValue)

• Every entity has a persistence identity
> Maps to primary key in database

• Can correspond to simple type
> @Id—single field/property in entity class
> @GeneratedValue—value can be generated automatically using various

strategies
> AUTO - Choose type depending on database, e.g. IDENTITY for MySQL
> IDENTITY - using a database identity column.
> SEQUENCE - using a database sequence
> TABLE - Use a sequence table for key generation (most portable)

21

Lab:Lab:

Exercise 1: JPA Basic AnnotationsExercise 1: JPA Basic Annotations
4320_jpa_basics.zip4320_jpa_basics.zip

22

@Transient

• Use it for any attribute that does not map to a column

@Entity
@Table(name="my_own_employee_table")
public class Employee {

 @Id
 private int id;
 @Column(name="my_name")
 private String name;
 @Column(name="my_bonus")
 private long salary;
 @Transient
 private Double bonus;
 @Transient
 private Boolean b;

23

@Temporal

• Use it to map Date or Calendar attribute

@Entity
public class Employee {

 @Id
 private int id;

 @Temporal(TemporalType.DATE)
 @Column(name = "my_birthday")
 private Date dateOfBirth;

 @Temporal(TemporalType.TIME)
 private Date currentTime;

 @Temporal(TemporalType.TIMESTAMP)
 private Calendar dateOfHiring;

24

@Enumerated
• Use it to map enum

public enum EmployeeType {
 ADMIN,
 MANAGER,
 OFFICER
}

@Entity
@Table(name="my_own_employee_table")
public class Employee {

 //@Enumerated(EnumType.STRING)
 @Enumerated(EnumType.ORDINAL)
 private EmployeeType employeeType;

25

Lab:Lab:

Exercise 2: JPA Misc. AnnotationsExercise 2: JPA Misc. Annotations
4320_jpa_basics.zip4320_jpa_basics.zip

Entity Manager &Entity Manager &
Persistence Context &Persistence Context &

Persistence UnitPersistence Unit

27

Key Concepts of JPA Operations

• Entity manager

• Persistence context

• Persistence unit

28

What is EntityManager?

• Manages the state and life-cycle of entities
> Creates and removes entity instances within the persistence context

• Handles querying entities within a persistence context
> Performs finding entities via their primary keys

• Lock entities
• Accessible through EntityManager Java interface

> The life-cycle operations are defined in the EntityManager interface

• Similar in functionality to Hibernate Session

29

Types of Entity Managers

• #1: Application-Created Entity Manager (Java SE environment)
> Entity manager is created and managed by the application

• #2: Container-Created Entity Manager (Java EE environment)
> Entity manager is created and managed by the Container
> Entity manager will be provided to the application via dependency injection

30

#1: Application Created EM (Java SE)

 public static void main(String[] args) {
 // Application is responsible for explicitly obtaining Entity Manager
 // and life-cycle of it
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("EmployeeService");
 EntityManager em = emf.createEntityManager();

 Collection emps = em.createQuery("SELECT e FROM Employee e")
 .getResultList();

 // Some code

 em.close();
 emf.close();

31

#2: Container-Created EM (Java EE)
@Stateless
public class OrderEntry {

// Entity Manager is created & injected by the container.
@PersistenceContext
EntityManager em;

public void enterOrder(int custID, Order newOrder){

 // Use find method to locate customer entity
 Customer c = em.find(Customer.class, custID);
 // Add a new order to the Orders
 c.getOrders().add(newOrder);
 newOrder.setCustomer(c);
 }

// No need to close EntityManager
}

32

Persistence Context & Entity Manager

• Persistence context
> Represents a set of managed entity instances at runtime
> “Entity instance is in managed state” means it is contained in a particular

persistent context
> All entity instances in a particular persistent context behaves in a

consistent manner – for example, all changed entity instances will be
persisted to the database table next commit or flush

• Entity manager
> Manages persistence context
> Performs life-cycle operations on entities maintained in the persistence

context

Manipulation ofManipulation of
Entities (in the Entities (in the

PersistenceContext) viaPersistenceContext) via
EntityManagerEntityManager

34

Persist Operation

public Order createNewOrder(Customer customer) {
 // Create new object instance – entity is in transient state

Order order = new Order(customer);

 // After persist() method is called upon the entity,
 // the entity state is changed to managed. In other
 // words, the entity is added to the persistence context.
 // On the next flush or commit, the newly persisted
 // instances will be inserted into the database table.

entityManager.persist(order);

return order;
}

35

Find and Remove Operations

public void removeOrder(Long orderId) {
Order order =

 // Try to find an entity in the persistence context
 entityManager.find(Order.class, orderId);

 // The instances will be deleted from the the
 // persistence context first.
 // And on the next flush or commit, corresponding
 // row will be deleted from the database table.

entityManager.remove(order);
}

36

Merge Operation

public OrderLine updateOrderLine(OrderLine orderLine) {

 // The merge method returns a managed copy of
 // the given detached entity. In other words, the
 // entity is now in the persistence context.

return entityManager.merge(orderLine);
}

37

EntityManager Methods
• void persist(Object entity) – makes an instance managed (i.e. persistent)
• void remove(Object entity) - removes the entity from the persistence context

(when the transaction is committed or persistence context is flushed, the
corresponding row in the table is also removed – difference from “detach”)

• void detach(Object entity) - detaches the entity from the persistence context
• entity = merge(Object entity) - synchronize the state of detached entity,

making it managed again, returns it
• void refresh(Object entity) - reloads state from the database
• find(Class<T> entityClass, Object primaryKey) - find an entity
• void flush() - synchronize the persistence context to the underlying database
• void clear() - clears the persistence context, causing all managed entities to

become detached
• boolean contains(Object entity) - checks if the instance belongs to the

current persistence context

38

Lab:Lab:

Exercise 3: Life cycle methodsExercise 3: Life cycle methods
jpa_basics_lifecyclejpa_basics_lifecycle
4320_jpa_basics.zip4320_jpa_basics.zip

 Persistence Unit Persistence Unit

40

What is Persistence Unit?

• Entity manager handles the communication to the database
through a persistence provider

• When Entity manager is created either by Application or
Container, configuration information is needed for configuring the
persistence manager
> In the same way, your JDBC application need to have configuration

information

• The configuration data is called “Persistence Unit”

• Represented by persistence.xml
> Every JPA application has to have a persistence.xml file
> Located under /META-INF

41

What Info. Does Persistence Unit Define?

• Name of the persistence unit

• Transaction type
> “RESOURCE_LOCAL” for application-managed environment
> “JTA” for container-managed environment

• Persistence provider class

• Entity classes (only for Java SE application)

• Table generation strategy

• Database related
> “Database connection properties” for application-managed environment
> “Datasource” for container-managed environment (since Datasource

already captures the database connection information) – datasources are
created and managed separately

42

persistence.xml (JPA 1.0) - for Application
Managed environment
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="EmployeeService" transaction-type="RESOURCE_LOCAL">
 <provider>oracle.toplink.essentials.PersistenceProvider</provider>
 <class>entities.Employee</class>
 <properties>
 <property name="toplink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="toplink.jdbc.url" value="jdbc:derby://localhost:1527/testdb"/>
 <property name="toplink.jdbc.user" value="app"/>
 <property name="toplink.jdbc.password" value="app"/>
 <!-- enable this property to see SQL and other logging -->
 <!-- property name="toplink.logging.level" value="FINE"/ -->
 <property name="toplink.ddl-generation" value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

Persistence
Provider

43

persistence.xml (JPA 1.0) - for Container
Managed environment
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="jsf-jpa-war" transaction-type="JTA">
 <jta-data-source>jdbc/__default</jta-data-source>
 <properties>
 <!-- use this property if target server is GlassFish V3 with EclipseLink -->
 <property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
 <!-- use this property if toplink is a target server persistence provider
 <property name="toplink.ddl-generation" value="drop-and-create-tables"/> -->
 </properties>
 </persistence-unit>
</persistence>

44

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

44

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Where We Are
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Persist Operation
	Find and Remove Operations
	Merge Operation
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

