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Topics

• What and Why Design Principles?

• S.O.L.I.D. design principles

• Other design principles
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What is and Why OO Design Principles?

• Represent a set of guidelines that helps us to avoid having a bad 
design (Robert Martin)

• Characteristics of bad design
> Rigidity - It is hard to change because every change affects too many 

parts of the system
> Fragility - When you make a change, unexpected parts of the system 

break
> Non-reusability (immobility) - It is hard to reuse in another application 

because it cannot be disentangled from the current application

• Characteristics of good design
> Clean and modular (opposite to non-reusability)
> Highly cohesive (opposite to rigidity)
> Loosely coupled (opposite to fragility)
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Benefits of OO Design Principles

• Extensibility
> New feature can be easily added without breaking other parts of the 

system

• Testability
> Testing verifies the system does what it is expected to do

• Code reuse'ability
> Software component can be usable in many applications

• Runtime change'ability (Flexibility)
> Behavior of a software component can be changed during runtime 

without modifying the existing code



S.O.L.I.D. Design PrinciplesS.O.L.I.D. Design Principles
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S.O.L.I.D. Design Principles

• Single Responsibility Principle (SRP)

• Open Closed Design Principle

• Liskov Substitution Principle (LSP)

• Interface Segregation Principle

• Dependency Inversion Principle
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Single Responsibility Principle (SRP)

• Motivation
> If you put more than one functionality in one class/method in Java,  it 

introduce coupling between two functionality

• What is it?
> There should not be more than one reason for a class/method to 

change, or a class should always handle single functionality
> Do not mix responsibilities (concerns) into a single class

• Benefit
> Less coupling
> Higher change'ability
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Lab:Lab:

Exercise 1: Single ResponsibilityExercise 1: Single Responsibility
9000_dp_principle.zip9000_dp_principle.zip
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Open Closed Design Principle

• Motivation
> Software is always changing
> Change should be able to be made with minimum impact to the rest of 

the application

• What is it?
> Classes should be Open for extension (for new functionality) but 

closed for modification
> Design should be done in a way to allow the adding of new 

functionality as new classes, keeping as much as possible existing 
code unchanged

• Benefit
> The existing code, which has been already tested, does not need to 

be changed
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Lab:Lab:

Exercise 2: Open Close PrincipleExercise 2: Open Close Principle
9000_dp_principle.zip9000_dp_principle.zip
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Liskov Substitution Principle(LSP) Principle

• Motivation
> It is easy to inherit a parent class and override the existing features

• What is it?
> Derived classes must be usable through the base class, without the 

need for the user to know the difference
> Inheritance should behave in the way that a derived type should add 

features, and not violate any of the superclass' existing features

• Example
> In Java, if you see code where “instanceof”, it indicates LSP is 

violated
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Lab:Lab:

Exercise 3: LSP PrincipleExercise 3: LSP Principle
9000_dp_principle.zip9000_dp_principle.zip
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Interface Segregation Principle

• Motivation
> Clients should not be forced to implement interfaces they don't use. 

• What is it?
> Instead of one fat interface many small interfaces are preferred based 

on groups of methods, each one serving one submodule
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Lab:Lab:

Exercise 4: Interface SegregationExercise 4: Interface Segregation
  PrinciplePrinciple

9000_dp_principle.zip9000_dp_principle.zip
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Dependency Inversion Principle

• What is it?
> High-level modules should not depend on low-level modules. Both 

should depend on abstractions
> Example: When concrete class A (higher-level) uses concrete class B 

(lower-level), the direction of dependency is from A to B.  When B 
changes, A needs to be changed (at compile time).  By introducing an 
abstraction C (maybe Java interface in Java program) between A and 
B, now the direction of dependency is now from B to C, which 
inverses the dependency

• Benefit
> De-coupling of code between modules
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Dependency Inversion Principle Tips

• All member variables in a class must be interfaces or abstract types

• Classes must connect only through interface/abstract  

• No class should derive from a concrete class

• No method should override an implemented method

• All variable instantiation requires the implementation of a Creational 
pattern as the Factory Method or the Factory pattern, or the more 
elaborated use of a Dependency Injection framework
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Lab:Lab:

Exercise 5: Dependency InversionExercise 5: Dependency Inversion
  PrinciplePrinciple

9000_dp_principle.zip9000_dp_principle.zip



Other Design PrinciplesOther Design Principles
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Other Popular Design Principles

• Encapsulate what changes

• Don’t Repeat Yourself (DRY)

• Don't look for things. Ask for things. (Dependency Injection)

• Favor Composition over Inheritance

• Program to the Interface not to the Implementation

• Delegation Principle
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Encapsulate What Changes

• What is it?
> Encapsulate the code that is expected to change in the future

• Benefit
> Better testability because existing code does not need to be changed 
> Better maintainability because you go to a single place for change

• Examples
> Factory pattern: encapsulates object creation, provides flexibility to 

introduce  new way of creating object later with no impact on existing 
code
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Lab:Lab:

Exercise 6: Encapsulate Exercise 6: Encapsulate 
what changes what changes 

9000_dp_principle.zip9000_dp_principle.zip
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Don't Repeat Yourself (DRY)

• What is it?
> Don't write duplicate code
> Use Abstraction instead to abstract common things in one place

• Benefit
> Increased maintainability of the code

• Examples
> If/Else and Switch statements tend to duplicate 
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Lab:Lab:

Exercise 7: DRY PrincipleExercise 7: DRY Principle
9000_dp_principle.zip9000_dp_principle.zip
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Don't look for things. Ask for things.

• What is it?
> Do not construct (using new keyword) or look for a dependency 

object. Instead get it injected
> This is called “dependency injection”

• Benefit
> Dependency resolution is separated from business logic 
> Unit testing will be easier via mocking the dependency
> Dependency resolution can be done via Dependency Injection 

framework (such as Spring DI)
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Lab:Lab:

Exercise 8: Don't look for things.Exercise 8: Don't look for things.
Ask for things (Dependency Injection)Ask for things (Dependency Injection)

9000_dp_principle.zip9000_dp_principle.zip
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Favor Composition over Inheritance

• What is it?
> Favor composition over inheritance for encapsulating changing 

behavior

• Benefit
> Composition provides higher flexibility and other benefits (see the 

following slides for more details) 
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Composition vs Inheritance (1)

• Higher flexibility
> With Inheritance, you have to choose which class you are extending 

at compile time, and it cannot be changed at runtime
> With Composition, you just define an abstraction which you want to 

use, which can hold different implementation during runtime

• Code reuse
> Through Inheritance, you can only extend one class, which means 

you code can only reuse just one class, not more than one

• Unit testing
> When you design your class using Inheritance, you must have parent 

class in order to test child class. Their is no way you can provide 
mock implementation of parent class.

> When you design classes using Composition, they are easier to test 
because you can supply mock implementation of the classes you are 
using 
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Composition vs Inheritance (2)

• Encapsulation
> Though both Inheritance and Composition allows code reuse, 

Inheritance breaks encapsulation because in case of Inheritance, sub 
class is dependent upon super class behavior. If parent classes 
changes its behavior, then child class is also get affected

• Final class
> Composition allows code reuse even from final classes, which is not 

possible using Inheritance because you cannot extend final class in 
Java, which is necessary for Inheritance to reuse code.
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When to use Inheritance?

• Both classes (super class and subclass) are in the same logical 
domain

• The subclass is a proper subtype of super class

• The super class's implementation is necessary or appropriate for 
the subclass

• The enhancements made by the subclass is “additive”

source: https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose



31

When to use Inheritance over composition
for changing behavior?

• When the changing behavior depends on the fields of the subclass

• Example 
> HourlyEmployee and SalariedEmployee classes are subclasses of 

Employee class
> HourlyEmployee class has “hoursWorked” and “hourlyRate” fields 

while SalariedEmployee has “monthlySalary” field
> Computation of monthly payment computed differently - monthly 

payment for the hourly employee is computed by "hourly rate" times 
"number of hours worked in a month"
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Program to Interface not Implementation 

• What is it?
> Always program to the interface and not to implementation
> Use interface type on variables, return types of method or argument 

type of methods 

• Benefit
> Flexible code which can work with any new implementation of the 

interface
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Delegation Principle

• What is it?
> Don't do all stuff  by yourself,  delegate it to respective class

• Benefit
> No duplication of code and pretty easy to modify behavior

• Examples at code 
> equals() and hashCode() method in Java Object class
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      Code with Passion!Code with Passion!
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