
1

 OOP Design PrinciplesOOP Design Principles

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What and Why Design Principles?

• S.O.L.I.D. design principles

• Other design principles

What and Why Design What and Why Design
Principles?Principles?

4

What is and Why OO Design Principles?

• Represent a set of guidelines that helps us to avoid having a bad
design (Robert Martin)

• Characteristics of bad design
> Rigidity - It is hard to change because every change affects too many

parts of the system
> Fragility - When you make a change, unexpected parts of the system

break
> Non-reusability (immobility) - It is hard to reuse in another application

because it cannot be disentangled from the current application

• Characteristics of good design
> Clean and modular (opposite to non-reusability)
> Highly cohesive (opposite to rigidity)
> Loosely coupled (opposite to fragility)

5

Benefits of OO Design Principles

• Extensibility
> New feature can be easily added without breaking other parts of the

system

• Testability
> Testing verifies the system does what it is expected to do

• Code reuse'ability
> Software component can be usable in many applications

• Runtime change'ability (Flexibility)
> Behavior of a software component can be changed during runtime

without modifying the existing code

S.O.L.I.D. Design PrinciplesS.O.L.I.D. Design Principles

7

S.O.L.I.D. Design Principles

• Single Responsibility Principle (SRP)

• Open Closed Design Principle

• Liskov Substitution Principle (LSP)

• Interface Segregation Principle

• Dependency Inversion Principle

8

Single Responsibility Principle (SRP)

• Motivation
> If you put more than one functionality in one class/method in Java, it

introduce coupling between two functionality

• What is it?
> There should not be more than one reason for a class/method to

change, or a class should always handle single functionality
> Do not mix responsibilities (concerns) into a single class

• Benefit
> Less coupling
> Higher change'ability

9

Lab:Lab:

Exercise 1: Single ResponsibilityExercise 1: Single Responsibility
9000_dp_principle.zip9000_dp_principle.zip

10

Open Closed Design Principle

• Motivation
> Software is always changing
> Change should be able to be made with minimum impact to the rest of

the application

• What is it?
> Classes should be Open for extension (for new functionality) but

closed for modification
> Design should be done in a way to allow the adding of new

functionality as new classes, keeping as much as possible existing
code unchanged

• Benefit
> The existing code, which has been already tested, does not need to

be changed

11

Lab:Lab:

Exercise 2: Open Close PrincipleExercise 2: Open Close Principle
9000_dp_principle.zip9000_dp_principle.zip

12

Liskov Substitution Principle(LSP) Principle

• Motivation
> It is easy to inherit a parent class and override the existing features

• What is it?
> Derived classes must be usable through the base class, without the

need for the user to know the difference
> Inheritance should behave in the way that a derived type should add

features, and not violate any of the superclass' existing features

• Example
> In Java, if you see code where “instanceof”, it indicates LSP is

violated

13

Lab:Lab:

Exercise 3: LSP PrincipleExercise 3: LSP Principle
9000_dp_principle.zip9000_dp_principle.zip

14

Interface Segregation Principle

• Motivation
> Clients should not be forced to implement interfaces they don't use.

• What is it?
> Instead of one fat interface many small interfaces are preferred based

on groups of methods, each one serving one submodule

15

Lab:Lab:

Exercise 4: Interface SegregationExercise 4: Interface Segregation
 PrinciplePrinciple

9000_dp_principle.zip9000_dp_principle.zip

16

Dependency Inversion Principle

• What is it?
> High-level modules should not depend on low-level modules. Both

should depend on abstractions
> Example: When concrete class A (higher-level) uses concrete class B

(lower-level), the direction of dependency is from A to B. When B
changes, A needs to be changed (at compile time). By introducing an
abstraction C (maybe Java interface in Java program) between A and
B, now the direction of dependency is now from B to C, which
inverses the dependency

• Benefit
> De-coupling of code between modules

17

Dependency Inversion Principle Tips

• All member variables in a class must be interfaces or abstract types

• Classes must connect only through interface/abstract

• No class should derive from a concrete class

• No method should override an implemented method

• All variable instantiation requires the implementation of a Creational
pattern as the Factory Method or the Factory pattern, or the more
elaborated use of a Dependency Injection framework

18

Lab:Lab:

Exercise 5: Dependency InversionExercise 5: Dependency Inversion
 PrinciplePrinciple

9000_dp_principle.zip9000_dp_principle.zip

Other Design PrinciplesOther Design Principles

20

Other Popular Design Principles

• Encapsulate what changes

• Don’t Repeat Yourself (DRY)

• Don't look for things. Ask for things. (Dependency Injection)

• Favor Composition over Inheritance

• Program to the Interface not to the Implementation

• Delegation Principle

21

Encapsulate What Changes

• What is it?
> Encapsulate the code that is expected to change in the future

• Benefit
> Better testability because existing code does not need to be changed
> Better maintainability because you go to a single place for change

• Examples
> Factory pattern: encapsulates object creation, provides flexibility to

introduce new way of creating object later with no impact on existing
code

22

Lab:Lab:

Exercise 6: Encapsulate Exercise 6: Encapsulate
what changes what changes

9000_dp_principle.zip9000_dp_principle.zip

23

Don't Repeat Yourself (DRY)

• What is it?
> Don't write duplicate code
> Use Abstraction instead to abstract common things in one place

• Benefit
> Increased maintainability of the code

• Examples
> If/Else and Switch statements tend to duplicate

24

Lab:Lab:

Exercise 7: DRY PrincipleExercise 7: DRY Principle
9000_dp_principle.zip9000_dp_principle.zip

25

Don't look for things. Ask for things.

• What is it?
> Do not construct (using new keyword) or look for a dependency

object. Instead get it injected
> This is called “dependency injection”

• Benefit
> Dependency resolution is separated from business logic
> Unit testing will be easier via mocking the dependency
> Dependency resolution can be done via Dependency Injection

framework (such as Spring DI)

26

Lab:Lab:

Exercise 8: Don't look for things.Exercise 8: Don't look for things.
Ask for things (Dependency Injection)Ask for things (Dependency Injection)

9000_dp_principle.zip9000_dp_principle.zip

27

Favor Composition over Inheritance

• What is it?
> Favor composition over inheritance for encapsulating changing

behavior

• Benefit
> Composition provides higher flexibility and other benefits (see the

following slides for more details)

28

Composition vs Inheritance (1)

• Higher flexibility
> With Inheritance, you have to choose which class you are extending

at compile time, and it cannot be changed at runtime
> With Composition, you just define an abstraction which you want to

use, which can hold different implementation during runtime

• Code reuse
> Through Inheritance, you can only extend one class, which means

you code can only reuse just one class, not more than one

• Unit testing
> When you design your class using Inheritance, you must have parent

class in order to test child class. Their is no way you can provide
mock implementation of parent class.

> When you design classes using Composition, they are easier to test
because you can supply mock implementation of the classes you are
using

29

Composition vs Inheritance (2)

• Encapsulation
> Though both Inheritance and Composition allows code reuse,

Inheritance breaks encapsulation because in case of Inheritance, sub
class is dependent upon super class behavior. If parent classes
changes its behavior, then child class is also get affected

• Final class
> Composition allows code reuse even from final classes, which is not

possible using Inheritance because you cannot extend final class in
Java, which is necessary for Inheritance to reuse code.

30

When to use Inheritance?

• Both classes (super class and subclass) are in the same logical
domain

• The subclass is a proper subtype of super class

• The super class's implementation is necessary or appropriate for
the subclass

• The enhancements made by the subclass is “additive”

source: https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

31

When to use Inheritance over composition
for changing behavior?

• When the changing behavior depends on the fields of the subclass

• Example
> HourlyEmployee and SalariedEmployee classes are subclasses of

Employee class
> HourlyEmployee class has “hoursWorked” and “hourlyRate” fields

while SalariedEmployee has “monthlySalary” field
> Computation of monthly payment computed differently - monthly

payment for the hourly employee is computed by "hourly rate" times
"number of hours worked in a month"

32

Program to Interface not Implementation

• What is it?
> Always program to the interface and not to implementation
> Use interface type on variables, return types of method or argument

type of methods

• Benefit
> Flexible code which can work with any new implementation of the

interface

33

Delegation Principle

• What is it?
> Don't do all stuff by yourself, delegate it to respective class

• Benefit
> No duplication of code and pretty easy to modify behavior

• Examples at code
> equals() and hashCode() method in Java Object class

34

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

